Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let Δk be the Dunkl Laplacian on Rd associated with a reflection group W and a multiplicity function k. The purpose of this paper is to establish the existence and the uniqueness of a positive solution on the unit ball B of Rd to the following boundary value problem: Δku = φ(u) in B and u = f on ∂B: We distinguish two cases of nonnegative perturbation φ: trivial and nontrivial.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
249--269
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Monastir University, Higher Institute of Computer Science and Mathematics, 5000 Monastir, Tunisia
autor
- Sousse University, High School of Sciences and Technology, 4011 Hammam Sousse, Tunisia
autor
- Monastir University, Faculty of Science of Monastir, 5000 Monastir, Tunisia
Bibliografia
- [1] J. Bliedtner and W. Hansen, Potential Theory: An Analytic and Probabilistic Approach to Balayage, Springer, Berlin 1986.
- [2] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, New York-London 1968.
- [3] H. Brezis and S. Kamin, Sublinear elliptic equations in Rn, Manuscripta Math. 74 (1) (1992), pp. 87-106.
- [4] N. Demni, First hitting time of the boundary of the Weyl chamber by radial Dunkl processes, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), paper 074.
- [5] J. F. van Diejen and L. Vinet (eds.), Calogero-Moser-Sutherland Models, Springer, New York 2000.
- [6] C. F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1) (1988), pp. 33-60.
- [7] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1) (1989), pp. 167-183.
- [8] C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (6) (1991), pp. 1213-1227.
- [9] E. B. Dynkin, Solutions of semilinear differential equations related to harmonic functions, J. Funct. Anal. 170 (2) (2000), pp. 464-474.
- [10] K. El Mabrouk, Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal. 58 (1-2) (2004), pp. 205-218.
- [11] L. Gallardo and M. Yor, A chaotic representation property of the multidimensional Dunkl processes, Ann. Probab. 34 (4) (2006), pp. 1530-1549.
- [12] K. Hassine, Mean value property of Δk-harmonic functions on W-invariant open sets, Afr. Mat. 27 (7-8) (2016), pp. 1275-1286.
- [13] K. Hikami, Dunkl operator formalism for quantum many-body problems associated with classical root systems, J. Phys. Soc. Japan 65 (2) (1996), pp. 394-401.
- [14] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), pp. 79-95.
- [15] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1) (1993), pp. 147-162.
- [16] J. B. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math. 10 (1957), pp. 503-510.
- [17] T. Khongsap and W. Wang, Hecke-Clifford algebras and spin Hecke algebras IV: Odd double affine type, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), paper 012.
- [18] A. V. Lair and A. W. Wood, Large solutions of sublinear elliptic equations, Nonlinear Anal. 39 (6) (2000), pp. 745-753.
- [19] L. Lapointe and L. Vinet, Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys. 178 (2) (1996), pp. 425-452.
- [20] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (3) (1991), pp. 721-730.
- [21] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin 1966.
- [22] H. Mejjaoli and K. Trimèche, Hypoellipticity and hypoanalyticity of the Dunkl Laplacian operator, Integral Transforms Spec. Funct. 15 (6) (2004), pp. 523-548.
- [23] R. Osserman, On the inequality Δu ≥ f(u), Pacific J. Math. 7 (1957), pp. 1641-1647.
- [24] G. Ren and L. Liu, Liouville theorem for Dunkl polyharmonic functions, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), paper 076.
- [25] M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (3) (1998), pp. 519-542.
- [26] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (3) (1999), pp. 445-463.
- [27] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (6) (2003), pp. 2413-2438.
- [28] K. Trimèche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral Transforms Spec. Funct. 13 (1) (2002), pp. 17-38.
- [29] Y. Xu, Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math. 49 (1) (1997), pp. 175-192.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d92ca69c-ce18-4881-bf69-644eb0a4dd7c