PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Annual phytoplankton dynamics in the Gulf Saint Vincent, South Australia, in 2011

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoplankton communities are the basis of many marine and freshwater food webs. Their composition fluctuates depending on hydrochemical conditions, such as light, temperature, salinity, pH, nutrients and turbulence. This study investigates the effect of changing environmental conditions on the coastal phytoplankton community of the Gulf St Vincent in South Australia. This is the first study simultaneously investigating the phytoplankton communities and their environment in this area and is essential to set up the baseline of future studies. In total, 179 phytoplankton species were identified and enumerated between January and December 2011. Phytoplankton communities were numerically dominated by chlorophytes during 6 months of the survey and an intense bloom (representing 62% of the overall phytoplankton community) of the diatom Cylindrotheca closterium was observed in February. Our results suggest that in the coastal waters of the Gulf St Vincent, the variability in environmental conditions is driven by temperature, wind speed/direction and the changing levels of phosphorus. However, the variability observed during autumn and winter months seems to be driven by changing levels of nitrogen and silica. In this shallow environment, the wind speed is proportional to the stress at the ocean floor and should directly influence the resuspension of sediment and associated nutrients. Nutrient ratios were observed to investigate potential phytoplankton nutrient limitation patterns. These ratios indicated that nitrogen was usually the limiting nutrient, which is typical of marine systems. Since nutrient enrichment is generally the main factor driving the succession and composition of phytoplankton communities in coastal waters, further work is now needed to identify the sources of nutrients in this region where river runoff is limited and evaporation is high relative to precipitation.
Czasopismo
Rocznik
Strony
757--778
Opis fizyczny
Bibliogr. 49 poz., mapki, tab., wykr.
Twórcy
autor
  • School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia
autor
  • School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia
autor
  • Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia
autor
  • School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia
autor
  • South Australian Water Corporation, 250 Victoria Square, Adelaide 5000, Australia
Bibliografia
  • [1]. Ansotegui A., Sarobe A., Trigueros J. M., Urrutxurtu I., Orive E., 2003, Size distribution of algal pigments and phytoplankton assemblages in a coastal- estuarine environment: contribution of small eukaryotic algae, J. Plankton Res., 25 (4), 341-355, http://dx.doi.org/10.1093/plankt/25.4.341
  • [2]. Balch W. M., Holligan P. M., Ackleson S. G., Voss K. J., 1991, Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine, Limnol. Oceanogr., 36 (4), 629-643, http://dx.doi.org/10.4319/lo.1991.36.4.0629
  • [3]. Barnett E. J., Harvey N., Belperio A. P., Bourman R. P., 1997, Sea-level indicators from a Holocene, tide-dominated coastal succession, Port Pirie, South Australia, T. Roy. Soc. South Aust., 121, 125-135.
  • [4]. Brzezinski M. A., 1985, The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, J. Phycol., 21 (3), 347-357, http://dx.doi.org/10.1111/j.0022-3646.1985.00347.x
  • [5]. Bye J. A., Kämpf J., 2008, Physical oceanography, [in:] Natural history of GSV, S. A. Shepherd, S. Bryars, I. Kirkegaard, P. Harbison & J. T. Jennings, Roy. Soc. South Austr. Inc., Adelaide, 56-70.
  • [6]. Carter C. M., Ross A. H., Schiel D. R., Howard-Williams C., Hayden B., 2005, In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition, J. Exp. Mar. Biol. Ecol., 326 (1), 1-13, http://dx.doi.org/10.1016/j.jembe.2005.05.006
  • [7]. Cloern J. E., 1996, Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California, Rev. Geophys., 43 (2), 127-168, http://dx.doi.org/10.1029/96RG00986
  • [8]. Donnelly A., Jones M., O'Mahony T., Byrne G., 2007, Selecting environmental indicator for use in strategic environmental assessment, Environ. Impact Asses., 27 (2), 161-175, http://dx.doi.org/10.1016/j.eiar.2006.10.006
  • [9]. Dortch Q., Whitledge T. E., 1992, Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?, Cont. Shelf Res., 12 (11), 1293-1309, http://dx.doi.org/10.1016/0278-4343(92)90065-R
  • [10]. Elser J. J., Bracken M. E. S., Cleland E. E., Grune D. S., Harpole W. S., Hillebrand H., Ngai J. T., Seabloom E. W., Shurin J. B., Smith J. E., 2007, Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10 (12), 1135-1142, http://dx.doi.org/10.1111/j.1461-0248.2007.01113.x
  • [11]. Furnas M. J., 1990, In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates, J. Plankton Res., 12 (6), 1117-1151, http://dx.doi.org/10.1093/plankt/12.6.1117
  • [12]. Hajdu S., Höglander H., Larsson U., 2007, Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms, Harmful Algae, 6 (2), 189-205, http://dx.doi.org/10.1016/j.hal.2006.07.006
  • [13]. Hallegraef G. M., Bolch C. J. S., Hill D. R. A., Jameson I., Leroi J. M., McMinn A., Murray S., de Salas M. F., Saunders K. M., 2010, Algae of Australia: phytoplankton of temperate coastal waters, CSIRO Publ., Melbourne, 432 pp.
  • [14]. Hansen H., Koroleff F., 2007, Determination of nutrients, [in:] Methods of seawater analysis, K. Grasshoff, K. Kremling & M. Ehrhardt (eds.), Wiley-VCH Verlag GmbH, Weinheim, 41-73, http://dx.doi.org/10.1002/9783527613984.ch10
  • [15]. Harris G. P., 1986, Phytoplankton ecology: structure, function and fluctuation, Chapman & Hall, New York, 384 pp., http://dx.doi.org/10.1007/978-94-009-4081-9
  • [16]. Hecky R. E., Kilham P., 1988, Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichments, Limnol. Oceanogr., 33 (4, Pt. 2), 796-822, http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0796
  • [17]. Huertas I. E., Rouco M., López-Rodas V., Costas E., 2011, Warming will affect phytoplankton differently: evidence through a mechanistic approach, Proc. Roy. Soc. B: Biol. Sci., http://dx.doi.org/10.1098/rspb.2011.0160
  • [18]. Jennings J. C., Gordin L. I., Nelson D. M., 1984, Nutrient depletion indicates high primary productivity in the Weddell Sea, Nature, 309 (51-54), 51-54, http://dx.doi.org/10.1038/309051a0
  • [19]. Ji R., Chen C., Franks P. J. S., Townsend D. W., Durbin E. G., Beardsley R. C., Lough R. G., Houghton R. W., 2006, Spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank: 1-D and 2-D model studies, Deep-Sea Res. Pt. II, 53 (23-24), 2656-2683, http://dx.doi.org/10.1016/j.dsr2.2006.08.008
  • [20]. Justic, D., Rabalais N. N., Turner R. E., 1995, Stoichiometric nutrient balance and origin of coastal eutrophication, Mar. Pollut. Bull., 30 (1), 41-46, http://dx.doi.org/10.1016/0025-326X(94)00105-I
  • [21]. Kingston M. B., 2009, Growth and motility of the diatom Cylindrotheca closterium: implications for commercial applications, J. North Carolina Acad. Sci., 125, 138-142.
  • [22]. Lagus A., Suomela J., Weithoff G., Heikkila K., Helminen H., Sipura J., 2004, Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea, J. Plankton Res., 26 (7), 779-798, http://dx.doi.org/10.1093/plankt/fbh070
  • [23]. Legendre L., Demers S., 1984, Towards dynamic biological oceanography and limnology, Can.. J. Fish. Aquat. Sci., 41, 2-19, http://dx.doi.org/10.1139/f84-001
  • [24]. Lessard E. J., Merico A., Tyrrell T., 2005, Nitrate: phosphate rations and Emiliania huxleyi blooms, Limnol. Oceanogr., 50 (3), 1020-1024, http://dx.doi.org/10.4319/lo.2005.50.3.1020
  • [25]. Leterme S. C., Edwards M., Seuront L., Attrill M. J., Reid P. C., John A. W. G., 2005, Decadal basin-scale changes in diatoms, dinoflagellates, and phytoplankton colour across the North Atlantic, Limnol. Oceanogr., 50 (4), 1244-1253, http://dx.doi.org/10.4319/lo.2005.50.4.1244
  • [26]. Leterme S. C., Ellis A. V., Mitchell J. G., Buscot M. J., Pollet T., Schapira M., Seuront L., 2010, Morphological flexibility of Cocconeis placentula (Bacillariophyceae) nanostructure to changing salinity levels, J. Phycol., 46 (4), 715-719, http://dx.doi.org/10.1111/j.1529-8817.2010.00850.x
  • [27]. Leterme S. C., Prime E., Mitchell J. G., Brown M. H., Ellis A. V., 2013, Diatom adaptability to environmental change: a case study of two Cocconeis species from high salinity areas, Diatom Res., http://dx.doi.org/10.1080/0269249X.2012.734530
  • [28]. Leterme S. C., Seuront L., Edwards M., 2006, Differential contribution of diatoms and dinoflagellates to phytoplankton biomass in the NE Atlantic Ocean and the North Sea, Mar. Ecol.-Prog. Ser., 312, 57-65, http://dx.doi.org/10.3354/meps312057
  • [29]. Li A., Stoecker D. K., Coats D. W., 2000, Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy, J. Plankton Res., 22 (11), 2105-2124, http://dx.doi.org/10.1093/plankt/22.11.2105
  • [30]. Li A., Stoecker D. K., Coats D. W., Adam E. J., 1996, Ingestion of fluorescently- labeled and phycoerythrin-containing prey by photosynthetic dinoflagellates, Aquat. Microb. Ecol., 10 (2), 139-147, http://dx.doi.org/10.3354/ame010139
  • [31]. Lips I., Lips U., 2010, Phytoplankton dynamics affected by coastal upwelling events in the Gulf of Finland in July-August 2006, J. Plankton Res., 32 (9), 1269-1282, http://dx.doi.org/10.1093/plankt/fbq049
  • [32]. Lourey M. J., Trull T. W., 2001, Seasonal nutrient depletion and carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia, J. Geophys. Res., 106 (C12), 31463-31488, http://dx.doi.org/10.1029/2000JC000287
  • [33]. Margalef R., 1975, Assessment of the effects on plankton, [in:] Marine pollution and marine waste disposal, Proc. 2nd Int. Cong., San Remo, 17-21 December, 1973, E. A. Pearson & E. De Fra ja Frangipane (eds.), Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Braunschweig, 487 pp.
  • [34]. Middleton J. F., Bye J. A. T., 2007, A review of the shelf-slope circulation along Australia's southern shelves: Cape Leeuwin to Portland, Prog. Oceanogr., 75 (1), 1-41, http://dx.doi.org/10.1016/j.pocean.2007.07.001
  • [35]. Pattiaratchi C., Newgard J., Hollings B., 2006, Physical oceanographic studies of Adelaide coastal waters using high resolution modelling, in-situ observations and satellite techniquest - Sub Task 2 Final Technical Report, 20, ACWS Tech. Rep.
  • [36]. PIRSA Report, 2013, Fish and dolphin mortalities in South Australia, 75 pp. Redfield A. C., Ketchum B. H., Richards F. A., 1963, The influence of organisms on the composition of sea water, [in:] The sea, Interscience, New York, 26-77.
  • [37]. Rensel J. E., 1993, Severe blood hypoxia of Atlantic salmon Salmosalar exposed to the marine diatom Chaetoceros concavicornis, [in:] Toxic phytoplankton blooms in the sea, Proc. 5th Int. Conf. 'Toxic Marine Phytoplankton', Elsevier, New York, 625-630.
  • [38]. Riegmann R., Stolte W., Noordeloos A., Slezak D., 2000, Nutrient uptake and alkaline phosphatase EC 3:1:3:1 activity of Emiliania huxleyi (Prymnesiophyceae), J. Phycology, 36 (1), 87-96, http://dx.doi.org/10.1046/j.1529-8817.2000.99023.x
  • [39]. Rimet F., Bouchez A., 2012, Biomonitoring river diatoms: implications of taxonomic resolution, Ecol. Indic., 15 (1), 92-99, http://dx.doi.org/10.1016/j.ecolind.2011.09.014
  • [40]. Round F. E., 1981, The ecology of algae, Cambridge Univ. Press, Cambridge, 653 pp.
  • [41]. Sanders R. W., Porter K. G., 1988, Phagotrophic phytoflagellates, Adv. Microb. Ecol., 10, 167-192, http://dx.doi.org/10.1007/978-1-4684-5409-3_5
  • [42]. Smayda T. J., 1990, Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic, [in:] Toxic marine phytoplankton, E. Granéli, B. Sunström, L. Edler & D. M. Anderson (eds.), Elsevier Sci. Ltd., New York, 554 pp.
  • [43]. Stoecker D. K., Li A., Coats D. W., Gustafson D., Nannen M. K., 1997, Mixotrophy in the dinoflagellate Prorocentrum minimum, Mar. Ecol.-Prog. Ser., 152, 1-12.
  • [44]. Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in phytoplankton communities of the open northern Baltic Sea, Estuar. Coast. Shelf Sci., 71 (3-4), 580-592, http://dx.doi.org/10.1016/j.ecss.2006.09.004
  • [45]. Takeda S., 1998, Influence of iron availability on nutrient consumption of diatoms in the oceanic water, Nature, 393, 774-777, http://dx.doi.org/10.1038/31674
  • [46]. Tanaka I., 1984, Distribution of chlorophyll a at the frontal region formed in the water adjacent to Funka Bay, Hokkaido, Bull. Japanese Soc. Fish. Oceanogr., 46, 9-17.
  • [47]. Tomas C. R., 1997, Identifying marine phytoplankton, Acad. Press, San Diego, 855 pp.
  • [48]. Welschmeyer N. A., 1994, Fluorometric analysis of Chlorophyll-a in the presence of Chlorophyll-b and pheopigments, Limnol. Oceanogr., 39, 1985-1992, http://dx.doi.org/10.4319/lo.1994.39.8.1985
  • [49]. Zar J. H., 1999, Biostatistical analysis, Prentice-Hall, Upper Saddle River, 663 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d92abccf-5548-49ce-8c93-0aa81ac4a0c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.