Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An electronic control system developed by our team for spatial mapping in Raman spectroscopy integrated with a glove box is described in this article. Key features include a Positioning and Optical Preview System with a 3-axis NanoMax stage for precise sample mapping, a Control Module based on the STM32F207 microcontroller for managing stage movements and synchronisation, and a custom software solution enabling measurement synchronisation via TTL signals. To validate our Raman mapping methodology, we analysed mechanically ground α-MoO₃ powder deposited on glass. The acquired spectra clearly exhibited all the characteristic vibrational modes of the orthorhombic phase, confirming the reliability of our mapping technique.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155901
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., fot.
Twórcy
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
Bibliografia
- [1] Chandra, A. et al. Unveiling the molecular secrets: A comprehensive review of Raman spectroscopy in biological research. ACS Omega 9, 50049-50063 (2024). https://doi.org/10.1021/acsomega.4c00591.
- [2] Zhang, X., Tan, Q.-H., Wu, J.-B., Shi, W. & Tan, P.-H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 8, 6435-6450 (2016). https://doi.org/10.1039/C5NR07205K.
- [3] Cong, X., Liu, X.-L., Lin, M.-L. & Tan, P.-H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 4, 13 (2020). https://doi.org/10.1038/s41699-020-0140-4.
- [4] Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 14, 231 (2019). https://doi.org/10.1186/s11671-019-3039-2.
- [5] Allakhverdiev, E. S. et al. Spectral insights: Navigating the frontiers of biomedical and microbiological exploration with Raman spectroscopy. J. Photochem. Photobiol. B 252, 112870 (2024). https://doi.org/10.1016/j.jphotobiol.2024.112870.
- [6] von Boehn, M. et al. Speeding up adiabatic ion transport in macro-scopic multi-Penning-trap stacks for high-precision experiments. Commun. Phys. 8, 107 (2025). https://doi.org/10.1038/s42005-025-02031-2.
- [7] Shi, L. et al. Water structure and electric fields at the interface of oil droplets. Nature 640, 87-93 (2025). https://doi.org/10.1038/s41586-025-08702-y.
- [8] Krukowski, P. et al. Study of stereochemical crystallization of racemic mixtures of [5] and [7]thiaheterohelicene molecules on Ag(111) surface by scanning tunneling microscopy and Raman scattering spectroscopy. Appl. Surf. Sci. 589, 152860 (2022). https://doi.org/10.1016/j.apsusc.2022.152860.
- [9] Krukowski, P. et al. Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics. Opto-Electron. Rev. 30, e141953 (2022). https://doi.org/10.24425/opelre.2022.141953.
- [10] Hoffmann, G. G. 19 Industrial Applications of Raman Spectroscopy. in Principles and Applications 336–338 (De Gruyter Brill, 2023). https://doi.org/doi:10.1515/9783110717556-019.
- [11] Piskorski, M. et al. The integration of Raman spectrometer with glove box for high-purity investigation in an inert gas condition. Measurement 251, 117190 (2025). https://doi.org/10.1016/j.measurement.2025.117190.
- [12] Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675 (2012). https://doi.org/10.1038/nmeth.2089.
- [13] Puebla, S. et al. Strain tuning MoO3 vibrational and electronic properties. npj 2D Mater. Appl. 8, 5 (2024). https://doi.org/10.1038/s41699-024-00442-3.
- [14] Kothaplamoottil Sivan, S. et al. Greener assembling of MoO3 nanoparticles supported on gum arabic: Cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technol. Environ. Policy 21, 1549-1561 (2019). https://doi.org/10.1007/s10098-019-01726-9.
- [15] Windom, B. C., Sawyer, W. G. & Hahn, D. W. A Raman spectro-scopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 42, 301-310 (2011). https://doi.org/10.1007/s11249-011-9774-x.
- [16] Lee, J. et al. Room temperature quantum emitters in van der Waals α-MoO3. Nano Lett. 25, 1142-1149 (2025). https://doi.org/10.1021/acs.nanolett.4c05594.
- [17] Wang, S. et al. Irreversible pressure effect on phase transitions and bandgap narrowing of layered MoO3. Mater. Today Adv. 21, 100476 (2024). https://doi.org/10.1016/j.mtadv.2024.100476.
- [18] Kowalczyk, D. A. et al. Local electronic structure of stable monolayers of α-MoO3-x grown on graphite substrate. 2d Mater 8, 25005 (2020). https://doi.org/10.1088/2053-1583/abcf10.
- [19] Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: The case of monolayer MoO3. ACS Appl. Mater. Interfaces 14, 44506-44515 (2022). https://doi.org/10.1021/acsami.2c09946.
- [20] Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Adv. Eng. Mater. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955.
- [21] Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Prz. Elektrotech. 98, 117-120 (2022). [in Polish]. https://doi.org/10.15199/48.2022.02.26.
- [22] Krukowski, P. et al. Characterisation of a graphene/NPB structure with Re2O7 as an interfacial layer for OLED application. Opto-Electron. Rev. 32, e147913 (2024). https://doi.org/10.24425/opelre.2024.148441.
- [23] Krukowski, P. et al. Heterostructure of graphene with a two-dimensional crystalline molybdenum trioxide (MoO3) layers. Opto-Electron. Rev. 33, e154308 (2025). https://doi.org/10.24425/opelre.2025.154308.
- [24] Joya, M. R., Alfonso, J. E. & Moreno, L. C. Photoluminescence and Raman studies of α-MoO3 doped with erbium and neodymium. Curr. Sci. 116, 1690-1695 (2019). https://doi.org/10.18520/cs/v116/i10/1690-1695.
- [25] Kumar Singh Patel, S. et al. Synthesis of α-MoO3 nanofibers for enhanced field-emission properties. Adv. Mater. Lett. 9, 585-589 (2018). https://doi.org/10.5185/amlett.2018.2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9272ccc-257d-47d2-9443-a32f2dd3ae4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.