PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and investigations of inductive power transfer (IPT) systems in terms of efficiency and magnetic field distribution properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problems connected to developing inductive power transfer IPT systems in aspects of high efficiency and suppression of electromagnetic field (EMF) emission are discussed. It is shown how important it is to compensate for large leakage impedance of IPT coils (air transformer) to improve efficiency of high power transfer. Such compensation circuits operating with resonant frequencies at soft switching conditions additionally allow for reduction of switching losses in power semiconductor devices of converters. The consideration has been illustrated and verified by experimental results measured on two different test stands (50 kW with planar coils and with two 12 kW receiver coils) built in a laboratory of the Łukasiewicz Research Network – Electrotechnical Institute.
Rocznik
Strony
789--797
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Electrotechnical Institute, Pożaryskiego St. 28, 04-703 Warsaw, Poland
autor
  • Łukasiewicz Research Network – Electrotechnical Institute, Pożaryskiego St. 28, 04-703 Warsaw, Poland
  • Łukasiewicz Research Network – Electrotechnical Institute, Pożaryskiego St. 28, 04-703 Warsaw, Poland
Bibliografia
  • [1] M.P. Kazmierkowski and A.J. Moradewicz, “Unplugged but Connected. Review of Contactless Energy Transfer Systems”, IEEE Industrial Electronics Magazine, 6(4) 47‒55 (2012).
  • [2] M.P. Kazmierkowski, R.M. Miśkiewicz, and A.J. Moradewicz, “Inductive coupled contactless energy transfer systems – a review,” in: Proc. WZEE, 1‒6 (2015).
  • [3] X. Wei, Z. Wang, and H. Dai, “A Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Energies, 7, 4316‒4341 (2014).
  • [4] Y. Zhaksylyk and M. Azadmehr, “Comparative Analysis of Inductive and Capacitive Feeding of Magnetic Resonance Wire-less Power Transfer,” in: 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), 1‒5 (2018).
  • [5] J. Hu and C.K. Lee, “Distance and Misalignment Adaption Analysis of Inductive and Radio Frequency Power Transmission,” in: 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), 1‒5 (2018).
  • [6] G. Blakiewicz, J. Jakusz, W. Jendernalik, and S. Szczepański, “Automatic tuning of a resonant circuit in wireless power sup-ply systems for biomedical sensor,” Bull. Pol. Ac.: Tech., 64(3) 641–646 (2016).
  • [7] M. Manoufali, K. Bialkowski, B. Mohammed, and A. Abbosh, “Wireless Power Link Based on Inductive Coupling for Brain Implantable Medical Devices,” IEEE Antennas Wirel. Propag. Lett., 17(1), 160–163 (2018).
  • [8] M. Schormans, V. Valente and A. Demosthenous, “Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial,” IEEE Transactions on Biomedical Circuits and Systems, 12(5), 1112‒1130 (2018).
  • [9] A. Ahmad, M.S. Alam, and R. Chabaan, “A Comprehensive Review of Wireless Charging Technologies for Electric Vehi-cles,” IEEE Transactions on Transportation Electrification, 4(1), 38‒63 (2018). ).
  • [10] C. Auvigne, P. Germano, D. Ladas, and Y. A. Perriard, “A dual-topology ICPT applied to an electric vehicle battery charger”, in: 2012 XXth Int. Conf. Electr. Mach. 2287–2292 (2012). doi:10.1109/ICElMach.2012.6350201
  • [11] R. Bosshard, J.W. Kolar, J. Mühlethaler, I. Stevanovic, B. Wunsch, and F. Canales, “Modeling and η-α-Pareto optimization of inductive power transfer coils for electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 50–64, Mar. 2015.
  • [12] Z. Huang, S.-C. Wong, and Chi K. Tse, “An Inductive Power Transfer Converter With High Efficiency Throughout Battery Charging Process,” IEEE Transactions on Power Electronics, 34 (X), 2019; DOI 10.1109/TPEL.2019.2891754.
  • [13] S. Judek and K. Karwowski, “Supply of electric vehicles via magnetically coupled air coils”, in: 2008 13th Int. Power Electron. Motion Control Conf. EPE-PEMC 2008 1497–1504 (2008). doi:10.1109/EPEPEMC.2008.4635479.
  • [14] M. Kesler, “Wireless Charging of Electric Vehicles,” in: 2018 IEEE Wireless Power Transfer Conference (WPTC), 1‒4 (2018).
  • [15] M. Kim and B. K. Lee, “System Design and Control of Inductive Power Transfer for Electric Vehicles Considering Wide Variation of Output Voltage and Coupling Coefficient”, IEEE Transactions on Power Electronics, 34(2) 1197‒1208 (2019)
  • [16] Y. Lu, F. Mao, and R. P. Martins, “Bi-directional Battery-to-Battery Wireless Charging Enabled by Reconfigurable Wireless Power Transceivers (Invited Paper)”, in: 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), 1‒2 (2018).
  • [17] P. Machura and Q. Li, “A Critical Review of Wireless Charging for Electric Vehicles”. Renewable and Sustainable Energy Reviews, Elsevier, 104(4), 209‒234 (2019)
  • [18] A.J. Moradewicz and M.P. Kazmierkowski, High efficiency con-tact-less energy transfer system with power electronic resonant converter”, Bull. Pol. Ac.: Tech., 57(4) 375‒381 (2009)
  • [19] M.J. Neath, A.K. Swain, U.K. Madawala, D.J. Thrimawithana, and D.M. Vilathgamuwa, “Inductive Power Interface for Electric Vehicles Controller Synthesis of a Bidirectional”, in: 2012 IEEE Third International Conference on Sustainable Energy Technolog. (ICSET) 60–65 (2012). doi:10.1109/ICSET.2012.6357376.
  • [20] C. Panchal, S. Stegen, and J. Lu, “Review of static and dynamic wireless electric vehicle charging system”, Engineering Science and Technology, an International Journal (21) 922–937 (2018).
  • [21] D. Patil, M.K. McDonough, J.M. Miller, B. Fahimi, and P.T. Balsara, “Wireless Power Transfer for Vehicular Applications: Over-view and Challenges”, IEEE Transactions on Transportation Electrification , 4(1) 3‒37 (2018).
  • [22] J. Kim, B. Lee, J. Lee, S. Lee, C. Park, S. Jung, S. Lee, K. Yi, and J. Baek, “Development of 1MW inductive powert Transfer system for a high speed train, ”IEEE Tranactions on Industrial Electronics 62(10) 6242–6250 (2015).
  • [23] R.M. Miskiewicz, “Contactless Supply Systems with Bidirec-tional Energy Flow”, PhD Thesis, Electrotechnical Institute Warsaw, 2016
  • [24] L. Zhao, D.J. Thrimawithana, and U.K. Madawala, “A hybrid bi-directional IPT system with improved spatial tolerance”, in: 2015 IEEE 2nd International Future Energy Electronics Conference, IFEEC 2015, 1–6 (2015). doi:10.1109/IFEEC.2015.7361591.
  • [25] R. Bosshard, J.W. Kolar, and B. Wunsch, “Control method for Inductive Power Transfer with high partial-load efficiency and resonance tracking”, in: 2014 International Power Electronics Conference, IPEC-Hiroshima – ECCE Asia 2014 2167–2174 (IEEE, 2014). doi:10.1109/IPEC.2014.6869889.
  • [26] B. Minnaert and N. Stevens, “Maximizing the Power Transfer for a Mixed Inductive and Capacitive Wireless Power Transfer System”, in: 2018 IEEE Wireless Power Transfer Conference (WPTC), 1‒4 (2018).
  • [27] M. Lu and K.D.T. Ngo, “Systematic Design of Coils in Series–Series Inductive Power Transfer for Power Transferability and Efficiency”, IEEE Transactions on Power Electronics, 33(4), 3333‒3345 ( 2018).
  • [28] M. Marcinek, H. Hołub, S. Kalisiak, and R. Pałka “Resonant frequency stabilization technique in series-series contactless energy transfer systems”, Archives of electrical engineering, 66(3) 547‒558 (2017).
  • [29] A. Sharma and D. Kathuria, “Performance Analysis of a Wireless Power Transfer System based on Inductive Coupling”, in: 2018 International Conference on Computing, Power and Communication Technologies (GUCON), 55‒59 (2018).
  • [30] D. Vincent, S. Chakraborty, P.S. Huynh, and S.S. Williamson, “Efficiency analysis of a 7.7 kW inductive wireless power transfer system with parallel displacement”, in: 2018 IEEE Inter-national Conference on Industrial Electronics for Sustainable Energy Systems (IESES), 409–414 (2018).
  • [31] Z. Huang, S.-C. Wong and C.K. Tse, “Control Design for Optimizing Efficiency in Inductive Power Transfer Systems”, IEEE Transactions on Power Electronics, 33(5), 4523‒4534 (2018)
  • [32] J.T. Matysik, “The current and volatge phase shift regulation in resonant converter with integration control”, IEEE Trans. Ind. Electron. 54, 1240‒1242 (2007).
  • [33] P.C. Ghosh, P.K. Sadhu, and A. Ghosh “A new circuit topology using Z-source resonant inverter for high power contactless power transfer application”, Archives of electrical engineering, 66(4), 843‒854 (2017).
  • [34] T. Diekhans and R.W. De Doncker, “A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load”, IEEE Trans. Power Elec-tron. 30, 6320–6328 (2015).
  • [35] S. Jeschke, M. Maarleveld, J. Baerenfaenger, B. Schmuelling, and A. Burkert, “Challenges in EMC Testing of EV and EVSE Equipment for Inductive Charging”, in: 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 967–971 (2018).
  • [36] H. Kim, C. Song, J. Kim, D.H. Jung, E. Song, S. Kim, and J. Kim, “Design of magnetic shielding for reduction of magnetic near field from wireless power transfer system for electric vehicle”, in 2014 International Symposium on Electromagnetic Compatibility, Sept 2014.
  • [37] M. Mohammad, E.T. Wodajo, S. Choi, and M. Elbuluk, “Mod-eling and Design of Passive Shield to Limit EMF Emission and to Minimize Shield Loss in Unipolar Wireless Charging System for EV”, IEEE Transactions on Power Electronics, 34(X), 2019; DOI 10.1109/TPEL.2019.2903788.
  • [38] IEEE Standard for Safety Levels With Respect to Human Expo-sure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Standard C95.1‒2005, Apr. 2006.
  • [39] International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)”, Health Phys., vol. 99 (6), 818–836 (2010), also avialable on: https://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf
  • [40] Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology, Standard SAEJ2954, Available: http://standards.sae.org/j2954_201605/
  • [41] Electric Vehicle Wireless Power Transfer (WPT) Systems–Part I: General Requirements, Engineering 360, Standard IEC 61980‒1; http://standards.globalspec.com/std/10072168/iec-61980‒1
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9263e87-1ebb-424c-ab44-bdd060afe19f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.