Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A precise, multi-track system for the simultaneous, real-time measurement of electrocardiographic (ECG) and many photopletysmographic (PPG) signals is described. This system allows the calculation of pulse wave delay parameters such as pulse arrival time (PAT) and pulse transit time (PTT). The measurement system was built on a custom, real-time embedded system with multiple specific analogue-front-end devices. Signals were recorded on-line and data were processed off-line in the Matlab software. Testing of human subjects was carried out on a group of 16 volunteers. The system was capable of taking a measurement of one 24-bit ECG and eight 22-bit PPG tracks with high precision (input-referred noise 1.4 mV for ECG and about 20 pA for PPG). All signals are sampled simultaneously (phase shift between ECG and PPG is only 1.5 ms for 250 Hz frequency sampling). Significant differences in pulse wave delays were found for the 16 subjects studied (e.g. about 100 ms for PAT on a right toe, 40 ms for differential PAT on left-right toes and about 100 ms for PTT calculated for forehead-right toe pulse wave). The proposed system provides a simultaneous and continuous evaluation of pulse wave delays for the entire arterial bed. The proposed measurement methods are comfortable and can be used for a long time. Simultaneous measurements of pulse wave delays at various sites increase the reliability of measurement and create new possibilities for medical diagnosis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
488--502
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Electronics, Military University of Technology, Warsaw, Poland
autor
- Faculty of Electronics, Military University of Technology, Warsaw, Poland
autor
- Department of Gerontology, Public Health and Didactics National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland; Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
autor
- Faculty of Electronics, Military University of Technology, Warsaw, Poland
Bibliografia
- [1] World Health Organization, Cardiovascular disease (CVDs). Fact sheet. Update May 2017. http://www.who.int/mediacentre/factsheets/fs317 [accessed on 15.03.2018].
- [2] European Commission, Eurostat. http://ec.europa.eu/eurostat/statistics-explained/index. php/Causes_of_death_statistics [accessed on 15.03.2018].
- [3] Cierniak-Piotrowska M, Marciniak G, Stanczak J. Statystyka zgonów i umieralnosci z powodu chorób ukladu krazenia. Glówny Urzad Statystyczny 2016.
- [4] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics – 2015 update. A report from the American Heart Association. Circulation 2015;131:e29–322. http://dx.doi.org/10.1161/CIR.0000000000000152 [Correction – 23.2.2016].
- [5] Mancia G, Parati G. Ambulatory blood pressure monitoring and organ damage. Hypertension 2000;36(5):894–900, https://www.ncbi.nlm.nih.gov/pubmed/11082163.
- [6] Bliziotis IA, Destounis A, Stergiou GS. Home versus ambulatory and office blood pressure in predicting target organ damage in hypertension: a systematic review and meta-analysis. J Hypertens 2012;30(7):1289–99. http://dx.doi.org/10.1097/HJH.0b013e3283531eaf.
- [7] Peter L, Noury N, Cerny M. A review of methods for non- invasive and continuous blood pressure monitoring: pulse transit time method is promising? IRMB 2014;35(5):271–82. http://dx.doi.org/10.1016/j.irbm.2014.07.002.
- [8] Buxi D, Redouté JM, Yuce MR. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiol Meas 2015;36(3):R1–26. http://dx.doi.org/10.1088/0967-3334/36/3/R1.
- [9] Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 2015;62(8):1879–901. http://dx.doi.org/10.1109/TBME.2015.2441951.
- [10] Ding XR, Zhao N, Yang GZ, Pettigrew RI, Lo B, Miao F, et al. Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of Carl Ludwig. IEEE J Biomed Health Inform 2016;20(6):1455–65. http://dx.doi.org/10.1109/JBHI.2016.2620995.
- [11] Sharma M, Barbosa K, Ho V, Griggs D, Ghirmai T, Krishnan SK, et al. Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 2017;5 (2):1–22. http://dx.doi.org/10.3390/technologies5020021.
- [12] Asmar R, Rudnichi A, Blacher J, London GM, Safar ME. Pulse pressure and aortic pulse wale are markers of cardiovascular risk in hypertensive populations. Am J Hypertens 2001;14(2):91–7. http://dx.doi.org/10.1016/S0895-7061(00)01232-2.
- [13] Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 2006;113:664–70. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.579342.
- [14] Safar ME, Henry O, Meaume S. Aortic pulse wave velocity: an independent marker of cardiovascular risk. Am J Geriatr Cardiol 2002;11(5):295–304. http://dx.doi.org/10.1111/j.1076-7460.2002.00695.x.
- [15] Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng 2015;35(5):555–65. http://dx.doi.org/10.1007/s40846-015-0086-8.
- [16] Nitzan M, Khanokh B, Slovik Y. The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiol Meas 2002;23(1):85–93. http://dx.doi.org/10.1088/0967-3334/23/1/308.
- [17] Wang R, Jia W, Mao ZH, Sclabassi RJ, Sun M. Cuff-free blood pressure estimation using pulse transit time and heart rate. 12th International Conference on Signal Processing (ICSP); 2014. pp. 115–8. http://dx.doi.org/10.1109/ICOSP.2014.7014980.
- [18] Choi Y, Zhang Q, Ko S. Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform. Comput Electr Eng 2013;39(1):103–11. http://dx.doi.org/10.1016/j.compeleceng.2012.09.005.
- [19] Newlin DB. Relationships ol pulse transmission times to pre-ejection period and blood pressure. Psychophysiology 1981;18(3):316–21. http://dx.doi.org/10.1111/j.1469-8986.1981.tb03042.x.
- [20] Wong MY, Pickwell-MacPherson E, Zhang YT, Cheng JC. The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. Eur J Appl Physiol 2011;111(1):135–44. http://dx.doi.org/10.1007/s00421-010-1626-0.
- [21] van Lien R, Schutte NM, Meijer JH, de Geus EJ. Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions. Int J Psychophysiol 2013;87(1):60–9. http://dx.doi.org/10.1016/j.ijpsycho.2012.11.001.
- [22] Hemon MC, Phillips JP. Comparison of foot finding methods for deriving instantaneous pulse rates from photoplethysmographic signals. J Clin Monit Comput 2016;30(2):157–68. http://dx.doi.org/10.1007/s10877-015-9695-6.
- [23] Tsai WC, Chen JY, Wang MC, Wu HT, Chi CK, Chen YK, et al. Association of risk factors with increased pulse wave velocity detected by a novel method using dual-channel photoplethysmography. Am J Hypertens 2005;18(8):1118–22. http://dx.doi.org/10.1016/j.amjhyper.2005.03.739.
- [24] Alivon M, Vo-Duc Phuong T, Vignon V, Bozec E, Khettab H, Hanon O, et al. A novel device for measuring arterial stiffness using finger–toe pulse wave velocity: validation study of the pOpmetre®. Arch Cardiovasc Dis 2015;108 (4):227–34. http://dx.doi.org/10.1016/j.acvd.2014.12.003.
- [25] Peltokangas M, Vehkaoja A, Huotari M, Verho J, Mattila VM, Röning J, et al. Combining finger and toe photoplethysmograms for the detection of atherosclerosis. Physiol Meas 2017;38(2):139–54. http://dx.doi.org/10.1088/1361-6579/aa4eb0.
- [26] Kortekaas MC, Niehof SP, van Velzen MH, Galvin EM, Stolker RJ, Huygen FJ. Comparison of bilateral pulse arrival time before and after induced vasodilation by axillary block. Physiol Meas 2012;33(12):1993–2002. http://dx.doi.org/10.1088/0967-3334/33/12/1993.
- [27] Wu JX, Li CM, Ho YR, Wu MJ, Huang PT, Lin CH. Bilateral photoplethysmography analysis for peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making. IEEE Sens J 2016;16(8): 2691–700. http://dx.doi.org/10.1109/JSEN.2015.2513899.
- [28] Kang HG, Lee S, Ryu HU, Shin Y. Identification of cerebral artery stenosis using bilateral photoplethysmography. J Healthcare Eng 2018;2018:1–9. http://dx.doi.org/10.1155/2018/3253519.
- [29] Erts R, Spigulis J, Kukulis I, Ozols M. Bilateral photoplethysmography studies of the leg arterial stenosis. Physiol Meas 2005;26(5):865–74. http://dx.doi.org/10.1088/0967-3334/26/5/022.
- [30] Allen J, Murray A. Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol Meas 2000;21(3):369–77. http://dx.doi.org/10.1088/0967-3334/21/3/303.
- [31] Liu AB, Hsu PC, Chen ZL, Wu HT. Measuring pulse wave velocity using ECG and photoplethysmography. J Med Syst 2011;35(5):771–7. http://dx.doi.org/10.1007/s10916-010-9469-0.
- [32] Di Maria C, Sharkey E, Klinge A, Zheng D, Murray A, O'Sullivan J, et al. Feasibility of monitoring vascular ageing by multi-site photoplethysmography. IEEE Conf Comput Cardiol 2012;39:817–20.
- [33] Peter L, Vorek I, Massot B, Bryjova I, Urbanczyk T. Determination of blood vessels expandability; multichannel photoplethysmography. IFAC-PapersOnLine 2016;49(25):284–8. http://dx.doi.org/10.1016/j.ifacol.2016.12.048.
- [34] Sieczkowski K, Sondej T. A method for real-time data acquisition using Matlab software. 23rd International Conference Mixed Design of Integrated Circuits & Systems; 2016. pp. 437–42. http://dx.doi.org/10.1109/MIXDES.2016.7529782.
- [35] Sondej T, Olszewski R, Dobrowolski A, Sieczkowski K. Uklad wielopunktowego pomiaru czasu propagacji fali tetna oraz sposób przetwarzania sygnalów. Patent application in the Patent Office of the Republic of Poland, no. P.419662, 2016 [in Polish].
- [36] Texas Instruments. ADS1298 Datasheet, Doc. No SBAS459K; 2015.
- [37] Texas Instruments. AFE4490 Datasheet, Doc. No SBAS602H; 2014.
- [38] Medlab GmbH. NIBScan OEM Module Data Sheet, Version 1.7; 2015.
- [39] STMicroelectronics. STM32F746 Datasheet; 2015, DocID027590.
- [40] Szplet R, Kwiatkowski P, Rozyc K, Jachna Z, Sondej T. Picosecond-precision multichannel autonomous time and frequency counter. Rev Sci Instit 2017;88(12):125101–12. http://dx.doi.org/10.1063/1.4997244.
- [41] Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiol Meas 2016;37(7):N38–48. http://dx.doi.org/10.1088/0967-3334/37/7/N38.
- [42] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;BME-32(3):230–6. http://dx.doi.org/10.1109/TBME.1985.325532.
- [43] Sedghamiz H. Matlab implementation of Pan Tompkins ECG QRS detector; 1932, https://www.researchgate.net/profile/Hooman_Sedghamiz/ publication/313673153_Matlab_Implementation_of_Pan_ Tompkins_ECG_QRS_detector/data/5ac701130f7e9bcd519/ Sedghamiz-2014-Pan-Tompkins-Matlab.pdf [accessed on 15.03.2018].
- [44] Systems BIOPAC Inc. MP System Hardware Guide. https://www.biopac.com/wp-content/uploads/ MP_Hardware_Guide.pdf [accessed on 12.09. 2018].
- [45] Wijshoff RW, Mischi M, Aarts RM. Reduction of periodic motion artifacts in photoplethysmography. IEEE Trans Biomed Eng 2017;64(1):196–207. http://dx.doi.org/10.1109/TBME.2016.2553060.
- [46] Hermeling E, Reesink KD, Reneman RS, Hoeks AP. Measurement of local pulse wave velocity: effects of signal processing on precision. Ultrasound Med Biol 2007;33 (5):774–81. http://dx.doi.org/10.1016/j.ultrasmedbio.2006.11.018.
- [47] Dumor K, Shoemaker-Moyle M, Nistala R, Whaley-Connell A. Arterial stiffness in hypertension: an update. Curr Hypertens Rep 2018;20(8):72. http://dx.doi.org/10.1007/s11906-018-0867-x.
- [48] Namekata T, Suzuki K, Ishizuka N, Shirai K. Establishing baseline criteria of cardio-ankle vascular index as a new indicator of arteriosclerosis: a cross-sectional study. BMC Cardiovasc Disord 2011;11:51. http://dx.doi.org/10.1186/1471-226111-51.
- [49] Avolio AP, Deng FQ, Li WQ, Luo YF, Huang ZD, Xing LF, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985;71:202–10. http://dx.doi.org/10.1161/01.CIR.71.2.202.
- [50] Engelen L, Bossuyt J, Ferreira I, van Bortel LM, Reesink KD, Segers P, et al. Reference values for local arterial stiffness. Part A: Carotid artery. J Hypertens 2015;33(10):1981–96. http://dx.doi.org/10.1097/HJH.0000000000000654.
- [51] Bossuyt J, Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S, et al. Reference values for local arterial stiffness. Part B: femoral artery. J Hypertens 2015;33(10):1997–2009. http://dx.doi.org/10.1097/HJH.0000000000000655.
- [52] Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O'Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983;68:50–8. http://dx.doi.org/10.1161/01.CIR.68.1.50.
- [53] Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, et al. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J 2010;31(7):883–91. http://dx.doi.org/10.1093/eurheartj/ehp546.
- [54] Sieczkowski K, Sondej T, Dobrowolski A, Olszewski R. Autocorrelation algorithm for determining a pulse wave delay. 20th Conference Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA); 2016. pp. 321–6. http://dx.doi.org/10.1109/SPA.2016.7763635.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d921a73b-36fc-4310-b6f3-96925fe43f03