Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The two main cases of convective fins with temperature-dependent thermal conductivity and heat generation are studied using the Ananthaswamy-Sivasankari method (ASM) approximately. The semi-analytical expressions for the temperature distribution in two cases are given in their clearest and most simple form. The obtained results are then compared with the numerical results, which show significant agreement. The dimensionless fin efficiency is also evaluated. The impacts of the numerous parameters involved in the problem are displayed graphically. With this approach, convergence can be attained more quickly. The application of this method to higher-order problems with boundary values in the applied sciences is possible.
Słowa kluczowe
Rocznik
Tom
Strony
5--18
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Research Centre and PG Department of Mathematics, The Madura College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
- Research Centre and PG Department of Mathematics, The Madura College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
Bibliografia
- 1. Kraus, A.D., Aziz, A., & Welty, J.R. (2002). Extended Surface Heat Transfer. New York: John Wiley.
- 2. Razani, A., & Ahmadi, G. (1977). On optimization of circular fins with heat generation. Journal of the Franklin Institute, 303(2), 211-218.
- 3. Ünal, H.C. (1987). Temperature distributions in fins with uniform and non-uniform heat generation and non-uniform heat transfer coefficient. International Journal of Heat and Mass Transfer, 30(7), 1465-1477.
- 4. Shouman, A.R. (1968). Nonlinear heat transfer and temperature distribution through fins and electric filaments of arbitrary geometry with temperature-dependent properties and heat generation. National Aeronautics and Space Administration.
- 5. Singh, S., & Singla, R.K. (2019). Experimental and numerical analysis of a nonlinear pin fin with temperature dependent properties and disparate boundary conditions. International Communications in Heat and Mass Transfer, 108, 104313.
- 6. Kundu, B., Barman, D., & Debnath, S. (2008). An analytical approach for predicting fin performance of triangular fins subject to simultaneous heat and mass transfer. International Journal of Refrigeration, 31(6), 1113-1120.
- 7. Kundu, B. (2007). Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: unified and comparative investigations. Applied Thermal Engineering, 27(5-6), 976-987.
- 8. Rajabi, A. (2007). Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Physics Letters A, 364(1), 33-37.
- 9. Aziz, A., & Khani, F. (2011). Convection-radiation from a continuously moving fin of variable thermal conductivity. Journal of the Franklin Institute, 348(4), 640-651.
- 10. Domairry, G., & Fazeli, M. (2009). Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Communications in Nonlinear Science and Numerical Simulation, 14(2), 489-499.
- 11. Ganji, D.D., Ganji, Z.Z., & Ganji, D.H. (2011). Determination of temperature distribution for annular fins with temperature dependent thermal conductivity by HPM. Thermal Science, 15(suppl. 1), 111-115.
- 12. Hatami, M., & Ganji, D.D. (2014). Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceramics International, 40(5), 6765-6775.
- 13. Hatami, M., Hasanpour, A., & Ganji, D.D. (2013). Heat transfer study through porous fins (Si3N4 and Al) with temperature-dependent heat generation. Energy Conversion and Management, 74, 9-16.
- 14. Inc, M. (2008). Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Mathematics and Computers in Simulation, 79(2), 189-200.
- 15. Ganji, D.D., & Dogonchi, A.S. (2014). Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. International Journal of Physical Sciences, 9(21), 466-474.
- 16. Buonomo, B., Cascetta, F., Manca, O., & Sheremet, M. (2021). Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model. Applied Thermal Engineering, 195, 117237.
- 17. Bouaziz, M.N., & Aziz, A. (2010). Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization. Energy Conversion and Management, 51(12), 2776-2782.
- 18. Vahabzadeh, A., Ganji, D.D., & Abbasi, M. (2015). Analytical investigation of porous pin fins with variable section in fully-wet conditions. Case Studies in Thermal Engineering, 5, 1-12.
- 19. Moradi, A. (2011). Analytical solution for fin with temperature dependent heat transfer coefficient. International Journal of Engineering and Applied Sciences, 3(2), 1-12.
- 20. Kumar, R.V., Sarris, I.E., Sowmya, G., & Abdulrahman, A. (2023). Iterative solutions for the nonlinear heat transfer equation of a convective-radiative annular fin with power law temperature- dependent thermal properties. Symmetry, 15(6), 1204.
- 21. Kumar, R.S., Sowmya, G., & Kumar, R. (2023). Execution of probabilists’ Hermite collocation method and regression approach for analyzing the thermal distribution in a porous radial fin with the effect of an inclined magnetic field. The European Physical Journal Plus, 138(5), 1-19.
- 22. Sowmya, G., Gamaoun, F., Abdulrahman, A., Kumar, R.S.V., & Prasannakumara, B.C. (2022). Significance of thermal stress in a convective-radiative annular fin with magnetic field and heat generation: application of DTM and MRPSM. Propulsion and Power Research, 11(4), 527-543.
- 23. Sowmya, G., Kumar, R.S.V., & Banu, Y. (2023). Thermal performance of a longitudinal fin under the influence of magnetic field using Sumudu transform method with pade approximant (STM‐PA). ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, e202100526.
- 24. Sowmya, G., Kumar, K.T., Srilatha, P., Kumar, R.V., & Madhu, J. (2022). Performance analysis of a longitudinal fin under the influence of magnetic field using differential transform method with Pade approximant. ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 102(11), e202100464.
- 25. Kumar, R.S.V., Kumar, R.N., Sowmya, G., Prasannakumara, B.C., & Sarris, I.E. (2022). Exploration of temperature distribution through a longitudinal rectangular fin with linear and exponential temperature-dependent thermal conductivity using DTM-Pade approximant. Symmetry, 14(4), 690.
- 26. Saravanakumar, S., Eswari, A., Makinde, O.D., Anbazhagan, N., Gyanendra Prasad Joshi, &Cho, W. (2023). Analysis of temperature-dependent thermal conductivity and fin efficiency: Direct Akbari-Ganji method. Case Studies in Thermal Engineering, 51, 103627.
- 27. Ghasemi, S.E., Hatami, M., & Ganji, D.D. (2014). Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Studies in Thermal Engineering, 4, 1-8.
- 28. Aziz, A., & Bouaziz, M.N. (2011). A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Conversion and Management, 52(8-9), 2876-2882.
- 29. Chitra, J., Ananthaswamy, V., Sivasankari, S., & Sivasundaram, S. (2023). A new approximate analytical method (ASM) for solving non-linear boundary value problem in heat transfer through porous fin. Mathematics in Engineering, Science & Aerospace (MESA), 14(1).
- 30. Sivasankari, S., Ananthaswamy, V., & Sivasundaram, S. (2023). A new approximate analytical method for solving some non-linear initial value problems in physical sciences. Mathematics in Engineering, Science and Aerospace, 14(1), 145-162.
- 31. Sivasankari, S., & Ananthaswamy, V. (2023). A mathematical study on non-linear ordinary differential equation for Magnetohydrodynamic flow of the Darcy-Forchheimer nanofluid. Computational Methods for Differential Equations, 11(4).
- 32. Ananthaswamy, V., & Kalaivani, M. (2016). Mathematical expression of radiative radial fins with temperature – dependent thermal conductivity. International Journal of Scientific Research and Modern Education (IJSRME), 1(1), 14-22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d91b7ab7-b348-47e7-ba74-24fee0167607