Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biological regeneration of water and organic sorbents used in the absorption of hydrophilic and hydrophobic pollutants, respectively, was studied. In both cases biodegradation takes place in a membrane bioreactor. In the case of organic sorbents regeneration of the biodegradation process is integrated with the extraction of a given pollutant to water phase. In experiments carried out in this work, the proposed systems were tested using a strain of Pseudomonas fluorescens. For hydrophilic compounds experiments were performed using alcohols (1-butanol and 2-propanol) as model substrates. Applying the mathematical model of a membrane bioreactor elaborated previously, the values of pollutant concentration were determined and positively verified in the experiments. This system of water sorbent regeneration is fully satisfying. The process of biodegradation integrated with extraction was analysed on the basis of model compounds such as benzene and toluene. The study confirmed a possibility of organic sorbent (silicone oil) regeneration. However, due to a very high partition coefficient of benzene or toluene between the organic and aqueous phases, the process could be considered only for the case of their high concentrations in the gas directed to absorption.
Czasopismo
Rocznik
Tom
Strony
667--678
Opis fizyczny
Bibliogr. 21, fot., rys., tab.
Twórcy
autor
- Wroclaw University of Technology, Department of Chemistry, Norwida 4/6, 50-33 Wrocław, Poland
autor
- Wroclaw University of Technology, Department of Chemistry, Norwida 4/6, 50-33 Wrocław, Poland
Bibliografia
- 1. Eykamp W., 1995. Microfiltration and ultrafiltration, In: Noble R.D., Stern S.A. (Eds.), Membrane science and technology series, Vol. 2, Membrane separations technology. Principles and applications. Elsevier, Amsterdam, The Netherlands.
- 2. Hekmat D., Feuchtinger A., Stephan M., Vortmeyer D., 2004. Biofilm population dynamics in a trickle - bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions. Biodegradation, 15, 2, 133-144. DOI: 10.1023/B:BIOD.0000015647.21321.df.
- 3. Huang K.-Ch., Zhao Z., Hoag G.E., Dahmani A., Block P.A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61, 4, 551-560. DOI: 10.1016/j.chemosphere.2005.02.032.
- 4. Khan F.I., Ghosal A.K., 2000. Removal of volative organic compounds from polluted air. J. Loss Prevent. Process Industr., 13, 527-545. DOI: 10.1016/S0950-4230(00)00007-3.
- 5. Kim D-J., Choi J-W., Choi N-C., Mahendran B., Lee C-E., 2005. Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl. Microbiol. Biotechnol., 69, 4, 456-462. DOI: 10.1007/s00253-0051997-z.
- 6. Liao Q., Tian X., Zhu X., Chen R., Wang Y.Z., 2008. Measurements and modeling of heat generation in a trickling biofilter for biodegradation of a low concentration volatile organic compound (VOC). Chem. Eng. J., 140, 221-234. DOI: 10.1016/j.cej.2007.09.043.
- 7. Long B., Wang Y., Yang Z., 2008. Partition behavior of benzoic acid in (water + n-dodecane) solutions at T = (293.15 and 298.15). J. Chem. Thermodyn., 40, 1565 – 1568. DOI: 10.1016/j.jct.2008.06.014.
- 8. Monod J., 1949. The growth of bacterial cultures. Ann. Rev. Microbiol., 3, 371-393. DOI:10.1146/annurev.mi.03.100149.002103.
- 9. Mulder M., 1996. Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- 10. Munoz R., Arriaga S., Hernández S., Guieysse B., Revah S., 2006. Enhanced hexane biodegradation in a two phase partitioning bioreactor: Overcoming pollutant transport limitations. Process Biochem., 41, 1614-1619. DOI: 10.1016/j.procbio.2006.03.007.
- 11. Pedersen A.R., Arvin E., 1997. Toluene removal in a biofilm reactor for waste gas treatment. Water Sci. Technol., 36, 1, 69-76. DOI: 10.1016/S0273-1223(97)00324-7.
- 12. Sander R., 1999. Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Retrieved from http://www.henrys-law.org.
- 13. Saravanan P., Pakshirajan K., Saha P., 2008. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technol., 99, 1, 205-209. DOI: 10.1016/j.biortech.2006.11.045.
- 14. A. Trusek-Holownia, A. Noworyta, Chem. Process Eng., 2012, 33 (4), 667-678
- 15. Shim H., Yang S.-T., 1999. Biodegradation of benzene, toluene, ethylbenzene and o-xylene by coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J. Biotechnol., 67, 99-112. DOI: 10.1016/S0168-1656(98)00166-7.
- 16. Spiess A.C., Eberhard W., Peters M., Eckstein M.F., Greiner L., Büchs J., 2008. Prediction of partitions coefficients using COSMO-RS: Solvent screening for maximum conversion in biocatalytic two-phase reaction systems. Chem. Eng. Proc., 47, 1034-1041. DOI: 10.1016/j.cep.2007.02.007.
- 17. Tabiś B., Malik J., 1998. Stability characteristics of a biochemical reactor with predator - prey relationship. A substrate inhibition case. Chem. Eng. J., 70, 3, 179-188. DOI: 10.1016/S1385-8947(98)00094-1.
- 18. Trusek-Holownia A., 2008. Wastewater treatment in a microbial membrane bioreactor – a model of a process. Desalination, 221, 552-558. DOI: 10.1016/j.desal.2007.01.116.
- 19. Yeom S.-H., Dalm M.C.F., Daugulis A.J., 2000. Treatment of high-concentration gaseous benzene streams using a novel bioreactor system. Biotechnol. Lett., 22, 1747-1751. DOI: 10.1023/A:1005689917744.
- 20. Zhu X., Alonso C., Suidan M.T., Cao H., Kim B.J., Kim R.R., 1998. The effect of liquid phase on VOC removal in trickle-bed biofilters. Water Sci. Technol., 38, 3, 315-322 . DOI: 10.1016/S0273-1223(98)00557-5.
- 21. Zhuang W.-Q., Tay J.-H., Yi S., Tay S.T.-L., 2005. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor. J. Biotechnol., 118, 1, 45-53. DOI: 10.1016/j.jbiotec.2005.02.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9142074-e921-45c9-a70e-5173266cb533