Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A sensorless indirect stator-flux-oriented control (ISFOC) induction motor drive at very low frequencies is presented herein. The model reference adaptive system (MRAS) scheme is used to estimate the speed and the rotor resistance simultaneously. However, the error between the reference and the adjustable models, which are developed in the stationary stator reference frame, is used to drive a suitable adaptation mechanism that generates the estimates of speed and the rotor resistance from the stator voltage and the machine current measurements. The stator flux components in the stationary reference frame are estimated through a pure integration of the back electro-motive force (EMF) of the machine. When the machine is operated at low speed, the pure integration of the back EMF introduces an error in flux estimation which affects the performance torque and speed control. To overcome this problem, pure integration is replaced with a programmable cascaded low-pass filter (PCLPF). The stability analysis method of the MRAS estimator is verified in order to show the robustness of the rotor resistance variations. Experimental results are presented to prove the effectiveness and validity of the proposed scheme of sensorless ISFOC induction motor drive.
Wydawca
Czasopismo
Rocznik
Strony
171--186
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax, Postal Box 1173, 3038 Sfax, Tunisia
- Laboratoire des Sciences de l’Information et des Systèmes (LSIS), UMR CNRS 7296 - Ecole Centrale de Marseille (ECM), Marseille, France
autor
- Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax, Postal Box 1173, 3038 Sfax, Tunisia
autor
- Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax, Postal Box 1173, 3038 Sfax, Tunisia
autor
- Laboratoire des Sciences de l’Information et des Systèmes (LSIS), UMR CNRS 7296 - Ecole Centrale de Marseille (ECM), Marseille, France
Bibliografia
- Abbou, A., Nasser, T., Mahmoudi, H., Akherraz, M. and Essadki, A. (2012). dSPACE IFOC Fuzzy Logic Controller Implementation for Induction Motor Drive. Journal of Electrical Systems, 8(3), pp. 317-327.
- Agrebi, Y., Triki, M., Koubaa, Y. and Boussak, M. (2007). Rotor Speed Estimation for Indirect Stator Flux Oriented Induction Motor Drive Based on MRAS Scheme. Journal of Electrical Systems, 3(3), pp. 131-143.
- Agrebi-Zorgani, Y., Koubaa, Y. and Boussak, M. (2010). Simultaneous Estimation of Speed and Rotor Resistance in Sensorless ISFOC Induction Motor Drive Based on MRAS Scheme. IEEE International Conference on Electrical Machines ICEM, Rome, 6-8 September 2010, IEEE, pp. 1-6.
- Agrebi-Zorgani, Y,. Koubaa, Y. and Boussak, M. (2016). MRAS State Estimator for Speed Sensorless ISFOC Induction Motor Drives with Luenberger Load Torque Estimation. ISA Transactions, 61, pp. 308-317.
- Barut, M., Demir, R., Zerdali. E. and Inan, R. (2012). Real Time Implementation of Bi Input Extended Kalman Filter Based Estimator for Speed Sensorless Induction Motor. Transactions on Industrial Electronics, 59(11), pp. 4197-4206.
- Ben Ammar, F., Pietrzak-David, M., De Fornel, B. and Merzaian, A. (1991). Field oriented control of high-power motor drives by Kalman filter flux observation. In: Proceeding, EPE’91, Firenze, Italy, 3-6 September 1991, pp. 182-187.
- Boussak, M. and Jarray, K. (2006). A High-Performance Sensorless Indirect Stator Flux Orientation Control of Induction Motor Drive. IEEE Transactions on Industrial Electronics, 53(1), pp. 41-49.
- Comanescu, M. (2015). A robust sensorless sliding mode observer with speed estimate for the flux magnitude of the induction motor drive. In: 9th International Conference on Compatibility and Power Electronics, Costa da Caparica, 24-26 June 2015, IEEE, pp. 224-229.
- Dybkowski, M. (2018). Universal Speed and Flux Estimator for Induction Motor. Power Electronics and Drives. AOP. DOI: 10.2478/pead-2018-0007.
- Dybkowski, M. and Orlowska-Kowalska, T. (2013). Speed sensorless induction motor drive system with MRAS type speed and flux estimator and additional parameter identification. In: 11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, Caen, France, 3-5 July, pp. 33-38.
- Ghaderi, A. and Hanamoto, T. (2011). Wide-Speed-Range Sensorless Vector Control of Synchronous Reluctance Motors Based on Extended Programmable Cascaded Low-Pass Filters. IEEE Transactions on Industrial Electronics, 58(6), pp. 2322-2333.
- Ghaderi, A., Hanamoto, T. and Teruo, T. (2006). A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification. Journal of Power Electronics, 6(3), pp. 235-244.
- Ghaderi, A., Hanamoto, T. and Tsuji, T. (2007). Very low speed sensorless vector control of synchronous reluctance motors with a novel startup scheme. In: IEEE Applied Power Electronics Conference and Exposition APEC, Anaheim, CA, USA, 25 Feburary-1 March 2007.
- Hadj Saïd, S., Mimouni, M. F., M’Sahli, F. and Farza, M. (2011). High Gain Observer Based On-Line Rotor and Stator Resistances Estimation for IMs. Simulation Modelling Practice and Theory, 19(7), pp. 1518-1529.
- Jarray, K. (2000). Contribution a la commande vectorielle d’un actionneur asynchrone avec et sans capteur mécanique: Conception, réalisation et évaluation de commandes numériques par orientation du flux statorique. Thèse en discipline: génie électrique, université de droit, d’économie et des sciences d’Aix Marseille.
- Karlovský, P., Linhart, R. and Lettl, J. (2016). Sensorless determination of induction motor drive speed using MRAS method. In: Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 30 June-2 July 2016, pp. 1-4.
- Niasar, A. H. and Khoei, H. R. (2015). Sensorless Direct Power Control of Induction Motor Drive Using Artificial Neural Network. Advances in Artificial Neural Systems, 2015, 9p.
- Popovic, V. M., Gecic, M. A., Vasic, V. V., Oros, D. V. and Marcetic, D. P. (2014). Evaluation of Luenberger observer based sensorless method for IM. In: International Symposium on International Electronics, Banja Luka, Bosnie-Herzégovine, INDEL 2014, 06-08 November 2014, pp. 128-133.
- Schauder, C. (1992). Adaptive Speed Identification for Vector Control of Induction Motors Without Rotational Transducers. IEEE Transactions on Industrial Applications, 28(5), pp. 1054-1061.
- Verma, R., Verma, V. and Chakraborty, C. (2014). ANN Based Sensorless Vector Controlled Induction Motor Drive Suitable for Four Quadrant Operation. In: Proceeding of the 2014 IEEE Students’ Technology Symposium, Kharagpur, India, 28 Feburary-2 March 2014, pp. 182-187.
- Zahraoui, Y., Akherraz, M. and Bennassar, A. (2016). Improvement of induction motor performance at low speeds using fuzzy logic adaptation mechanism based sensorless direct field oriented control and fuzzy logic controllers (FDFOC). In: 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 29 September-1 October 2016.
- Zaki Diab, A., Khaled, A. and Hassaneen, B. M. (2016). Parallel estimation of rotor resistance and speed for sensorless vector controlled induction motor drive. In: 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Russia, 30 June-4 July 2016, pp. 389-394.
- Zaky, M. S. (2011). A Stable Adaptive Flux Observer for a Very Low Speed Sensorless Induction Motor Drives Insensitive to Stator Resistance Variations. Ain Shams Engineering Journal, 2(1), pp. 11-20.
- Zaky, M. S. (2012). Stability Analysis of Speed and Stator Resistance Estimators for Sensorless Induction Motor Drives. IEEE Transactions on Industrial Electronics, 59(2), pp. 858-870.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d912ec83-641b-4607-b311-6afb2f3fcefe