Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Scaffoldings are used for works at height and in places that are hard to reach, which makes such works dangerous to employees and accidents occur frequently. Loads generated by scaffolding users cannot be avoided. Moving workers excite low-frequency (1–2 Hz) vibrations and scaffoldings as slender structures are prone to such dynamic action. The method for determining the probability of vibrations excitation is presented here. The quantity representing this probability is called the predictor of occurrence of a dangerous situation due to vibrations induced by a walking employee. The predictor of resonance with ith natural frequency requires an analysis of the scaffolding dynamic behavior. The frequencies and the natural mode shapes of vibrations were determined. Numerical dynamic simulations of the worker's movement on the penultimate decks of two scaffoldings were carried out, as well. Predictor analysis was made for single frequencies and combinations of frequency pairs. The predictor values calculated for the first frequency or combinations with it are the highest ones, however the probability of resonance is not only affected by the first frequency. To improve safety, the natural frequencies should be increased. For longitudinal vibrations, this can be done by adding more bracing or reducing lengths of anchors. Increasing the number of anchors gives good results in both directions. During scaffolding design of both typical and atypical constructions, one must determine the natural frequencies and then, if the first natural frequency is less than 4.0 Hz, perform a dynamic scaffolding analysis.
Czasopismo
Rocznik
Tom
Strony
145--158
Opis fizyczny
Bibliogr. 61 poz., wykr.
Twórcy
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
Bibliografia
- [1] Eurostat. Accidents at work by sex, age, severity, NACE Rev. 2 activity and specific physical activity [Internet]. 2019. https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do.[cited 15 Jul 2019].
- [2] Eurostat. Employment by NACE Rev. 2 activity, age and European socio-economic group [Internet]. 2019. https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do. [cited 23 May 2019].
- [3] Błazik-Borowa E, Czarnocki K, Dąbrowski A, Hoła B, Misztela A, Obolewicz J, et al. Work safety in the construction industry. Lublin: Lublin University of Technology; 2015.
- [4] Whitaker SM, Graves RJ, James M, McCann P. Safety with access scaffolds: development of a prototype decision aid based on accident analysis. J Saf Res. 2003;34:249–61.
- [5] Jin R, Zou PXW, Piroozfar P, Wood H, Yang Y, Yan L, et al. A science mapping approach based review of construction safetyresearch. Saf Sci. 2019;113:285–97. https://doi.org/10.1016/j.ssci.2018.12.006.
- [6] Czarnocki K, Błazik-Borowa E, Czarnocka E, Szer J, Hoła B, Rebelo M, et al. Scaffold use risk assessment model for construction process safety. In: Fidelis E, Mike B, editors., et al., Heal people constr conf “towards better safety, heal wellbeing, life constr conf proc. Bloemfointein: Department of Built Environment Central University of Technology; 2017. p. 275–84.
- [7] Błazik-Borowa E, Bęc J, Robak A, Szulej J, Wielgos P. Technical factors affecting safety on a scaffolding. In: Fidelis E, Mike B, editors. Int safety, heal people constr conf “towards better safety, heal wellbeing, life constr conf proc. Bloemfointein: Department of Built Environment Central University of Technology; 2017. p.154–63.
- [8] Błazik-Borowa E, Borowa A, Kawecki B, Kotowicz M, Robak A. Geodesic inventory of scaffolding geometry. Eng Struct. 2019;196:109360.
- [9] Jabłoński M, Szer I, Szer J. Probability of occurrence of health and safety risks on scaffolding caused by noise exposure. J Civ Eng Manag. 2018;24:437–43.
- [10] Pieńko M, Robak A, Błazik-Borowa E, Szer J. Safety conditions analysis of scaffolding on construction sites. World Acad Sci Eng Technol Int J Civ Environ Eng. 2018;12:72–7.
- [11] Szer I, Błazik-Borowa E, Szer J. The influence of environmental factors on employee comfort based on an example of location temperature. Arch Civ Eng. 2017;63:163–74. https://doi.org/10.1515/ace-2017-0035.
- [12] Robak A, Pieńko M, Błazik-Borowa E, Bęc J, Szer I. Analysis of exploitation damages of the frame scaffolding. MATEC Web Conf. 2019;284:08008.
- [13] Research project ORKWIZ. II Konferencja Naukow-techniczna Rusztowania. Praktyczne aspekty funkcjonowania rusztowań [Internet]. 2018. http://orkwiz.pollub.pl/konferencja.pdf. [cited 20 Jul 2020].
- [14] Błazik-Borowa E. Loads and actions on scaffolding as engineering structures. Politech. Lub. Lublin: Lublin University of Technology; 2018.
- [15] Rebelo M, Laranjeira P, Silveira F, Czarnocki K, Blazik-Borowa E, Czarnocka E, et al. Scaffold use risk assessment model: SURAM. In: Arezes PM, Baptista JS, Barroso MP, Carneiro P, Cordeiro P, Costa N, Melo RB, Miguel AS, editors. Occup Saf Hyg VI. CRC Press; 2018. p. 335–40. https://doi.org/10.1201/9781351008884-59.
- [16] Szer I, Szer J, Hoła B. Evaluation of climatic conditions affecting workers on scaffoldings. In: Ali MA, Platko P, editors. Adv Trends Eng Sci Technol III-Proc 3rd Int Conf Eng Sci Technol. Tatranské Matliare: CRC Press; 2015. p. 603–9.
- [17] Szaniawska K, Czarnocki K, Wisniewski Z, Wisniewska M. Influence of the human factor on the risk of work on scaffolding. In: Arezes PM, editor. Int Conf Appl Hum Factors Ergon AHFE 2019 Adv Saf Manag Hum Factors [Internet]. Washington D.C.: Springer; 2020. p. 58–68. https://doi.org/10.1007/978-3-030-20497-6_6.
- [18] Hoła B, Nowobilski T, Rudy J, Czarnocki K. An analysis of the influence of selected factors on the accident rate in the construction industry. Czas Tech [Internet]. 2018;6. http://www.ejournals.eu/Czasopismo-Techniczne/2018/Volume-6/art/11704/.
- [19] Czarnigowska A. Czego brakuje rusztowaniom-przepisy a praktyka. Inżynier Budownictwa [Internet]. 2019;3:42–9. https://www.inzynierbudownictwa.pl/drukuj/11656/.
- [20] Bęc J, Błazik-Borowa E, Jamińska-Gadomska P, Lipecki T. Vibrational characteristics of façade frame scaffoldings. Arch Civ Eng. 2020;66:467–84. https://doi.org/10.24425/ace.2020.134408.
- [21] Pinto A, Nunes IL, Ribeiro RA. Occupational risk assessment in construction industry-overview and reflection. Saf Sci. 2011;49:616–24. https://doi.org/10.1016/j.ssci.2011.01.003.
- [22] Sousa V, Almeida NM, Dias LA. Risk-based management of occupational safety and health in the construction industry-part 1:background knowledge. Saf Sci. 2014;66:75–86. https://doi.org/10.1016/j.ssci.2014.02.008.
- [23] Chong Hui L, Siti Halipah I, Rohaida A, Nor Azalina R, Mohd NN. Causes of fall hazards in construction site management. Int Rev Manag Mark. 2016;6:257–63.
- [24] Nadhim EA, Hon C, Xia B, Stewart I, Fang D. Falls from height in the construction industry: a critical review of the scientific literature. Int J Environ Res Public Health. 2016;13:638.
- [25] Ghodrati N, Yiu TW, Wilkinson S, Shahbazpour M. A new approach to predict safety outcomes in the construction industry. Saf Sci. 2018;109:86–94.
- [26] Mohammadi A, Tavakolan M, Khosravi Y. Factors influencing safety performance on construction projects: a review. Saf Sci. 2018;109:382–97.
- [27] Yi K-J, Langford D. Scheduling-based risk estimation and safety planning for construction projects. J Constr Eng Manag. 2006;132:626–35.
- [28] Jannadi OA, Almishari S. Risk assessment in construction. J Constr Eng Manag. 2003;129:492–500.
- [29] Hallowell M, Gambatese J. A formal model for construction safety risk management. In: Constr Build Res Conf R Inst Chart Surv. Atlanta: RICS, Georgia Tech and the contributors; 2007.
- [30] Sousa V, Almeida NM, Dias LA. Risk-based management of occupational safety and health in the construction industry-part 2: quantitative model. Saf Sci. 2015;74:184–94. https://doi.org/10.1016/j.ssci.2015.01.003.
- [31] Alomari K, Gambatese J, Nnaji C, Tymvios N. Impact of risk factors on construction worker safety: a Delphi rating study based on field worker perspective. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04591-7.
- [32] Miguel P, Martins F. Advances in safety management and human factors. In: Proceedings of the AHFE 2018 international conference on safety management and human factors. Springer; 2018.
- [33] Bavafa A, Mahdiyar A, Marsono AK. Identifying and assessing the critical factors for effective implementation of safety programs in construction projects. Saf Sci. 2018;106:47–56. https://doi.org/10.1016/j.ssci.2018.02.025.
- [34] Aminbakhsh S, Gunduz M, Sonmez R. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects. J Saf Res. 2013;46:99–105. https://doi.org/10.1016/j.jsr.2013.05.003.
- [35] Raviv G, Shapira A, Fishbain B. AHP-based analysis of the risk potential of safety incidents: case study of cranes in the construction industry. Saf Sci. 2017;91:298–309. https://doi.org/10.1016/j.ssci.2016.08.027.
- [36] Shi S, Jiang M, Liu Y, Li R. Risk assessment on falling from height based on AHP-fuzzy. Proc Eng. 2012;45:112–8. https://doi.org/10.1016/j.proeng.2012.08.130.
- [37] Ilbahar E, Karaşan A, Cebi S, Kahraman C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf Sci. 2018;103:124–36.
- [38] Rubio-Romero JC, Rubio Gámez MC, Carrillo-Castrillo JA. Analysis of the safety conditions of scaffolding on construction sites. Saf Sci. 2013;55:160–4. https://doi.org/10.1016/j.ssci.2013. 01.006.
- [39] Błazik-Borowa E, Szer J. The analysis of the stages of scaffolding “life” with regard to the decrease in the hazard at building works. Arch Civ Mech Eng. 2015;15:516–24.
- [40] Nuraffefa H, Hanizam A. Safety scaffolding in the construction site. J Teknol (Sciences Eng). 2015;75:26–31. www.jurnaltekn ologi.utm.my.
- [41] Hoła A, Hoła B, Szóstak M. Analysis of the causes and consequences of falls from scaffolding using the Polish constructionindustry as an example. In: IOP Conf. Ser. Mater. Sci. Eng. IOP Publishing; 2017. p. 012050. https://doi.org/10.1088/1757-899X/251/1/012050.
- [42] Abas NH, Noridan MR, Rahmat MH, Abas NA, Ibrahim NQ. Causes of accidents involving scaffolding at construction sites causes of accidents involving scaffolding at construction sites. J Technol Manag Bus. 2020;7:75–86.
- [43] Harms-Ringdahl L. Safety analysis. Principles and practice in occupational safety. London: Taylor & Francis; 2005.
- [44] Błazik-Borowa E, Szer J. Basic elements of the risk assessment model for the occurrence of dangerous events on scaffoldings. Przegląd Bud. 2016;10:24–9.
- [45] Bird FE, Germain GL. Practical loss control leadership. Logan-ville: International Loss Control Institute; 1986.
- [46] Armstrong TJ, Buckle P, Fine JF, Hagberg M, Jonsson B, Kilbom A, et al. A conceptual model for work-related neck and upper-limb musculoskeletal disorders. Scand J Work Environ Health. 1993;19:73–84.
- [47] Jebelli H, Ahn CR, Stentz TL. Fall risk analysis of construction workers using inertial measurement units: validating the usefulness of the postural stability metrics in construction. Saf Sci. 2016;84:161–70. https://doi.org/10.1016/j.ssci.2015.12.012.
- [48] Bęc J, Błazik-Borowa E. Dynamic properties of façade frame scaf-foldings. MATEC Web Conf. 2019;285:00001. https://doi.org/10.1051/matecconf/201928500001.
- [49] Cyniak P, Szer I, Szer J, Lipecki T, Błazik-Borowa E. Impact of dynamic load on scaffold construction effort. J Civ Eng Environ Archit. 2017;64:487–97.
- [50] Matsumoto Y, Sato S, Nishioka T, Shiojiri H. A study on design of pedestrian over-bridges. Trans JSCE. 1972;4:50–1.
- [51] Matsumoto Y, Nishioka T, Shiojiri H, Matsuzaki K. Dynamic design of footbridges. Zurich: IABSE; 1978. p. 1–15.
- [52] Wiss JF, Wiss J, Parmelee RA. Human perception of transient vibrations. J Struct Div. 1974;100:773–87.
- [53] Andriacchi TP, Ogle JA, Galante JO. Walking speed as a basis for normal and abnormal gait measurements. J Biomech. 1977;10:261–8.
- [54] Bachmann H, Ammann WJ, Eisenmann J, Floegl I, Hirsch GH, Klein GK, et al. Vibration problems in structures: practical guidelines. Basel: Birkhauser Verlag; 1995.
- [55] Racic V, Pavic A, Brownjohn JMW. Experimental identification and analytical modelling of human walking forces: literature review. J Sound Vib. 2009;326:1–49.
- [56] Racic V, Brownjohn JMW. Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking. Comput Struct. 2012;90–91:116–30. https://doi.org/10.1016/j.compstruc.2011.10.002.
- [57] Kala J, Salajka V, Hradil P. Dynamic action induced by walking pedestrian. Int J Civ Environ Eng. 2012;6:766–9.
- [58] Wheeler E. Prediction and control of pedestrian induced vibration in footbridges. J Struct Div ASCE. 1982;108:2045–65.
- [59] EN 12810-1. Façade scaffolds made of prefabricated components. Part 1: product specifications. Brussels: European Committee for Standardization; 2010.
- [60] Jaminska-Gadomska P, Bȩc J, Lipecki T, Robak A. Verification of the façade scaffolding computer model. Arch Civ Eng. 2018;64:42–53.
- [61] Cyniak P, Błazik-Borowa E, Szer J, Lipecki T, Szer I. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements. In: AIP Conf. Proc. AIP Publishing LLC; 2018. p. 150002. https://doi.org/10.1063/1.5019155.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d90dc6cc-6065-4e63-b06e-7f231aafe5d5