PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spark plasma sintering of Al-SiC composites with high SiC content: study of microstructure and tribological properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the microstructure and tribological properties of Al-xSiC composites (x =70 and 90 wt% SiC) produced in spark plasma sintering (SPS). Due to their attractive thermal, physical, and mechanical properties, aluminum matrix composites with high-volume fractions of silicon carbide (> 50%) have become a major area of interest as a potential material for multifunctional electronic packaging and cryogenic applications. The SPS process was carried out in a vacuum atmosphere under various conditions. Composites with a density close to theoretical (96-98%) were obtained. X-ray diffraction and scanning electron microscopy with EDS analysis were used to characterize the microstructure. Mechanical properties were determined by hardness measurements and a three-point bending test. The tribological properties of the composites were determined utilizing a block-on-ring tribotester. As a criterion for wear resistance, weight loss measured under specific friction conditions, that is, depending on the type of material and the applied load, was adopted. The researched materials were characterized by an even distribution of the carbide phase in the matrix. Composites with the highest SiC phase content (90 wt%) had higher hardness (2537 HV1) and flexural strength (242} 15 MPa) with worse wear resistance at the same time. The weight loss of this composite was 0.43 and 0.76% for friction under loads of 100 and 200 N, respectively, and was 360 and 270% higher than that determined for the composites with the lower content of the SiC phase (70 wt%). The wear rate was three times higher for the Al-90wt%SiC composites.
Rocznik
Strony
art. e229, 1--13
Opis fizyczny
Bibliogr. 37 poz., il., wykr., tab.
Twórcy
  • Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
autor
  • Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Krakow, Poland
  • Łukasiewicz Research Network – Poznań Institute of Technology, Poznan, Poland
Bibliografia
  • 1. Liu Q, Wang F, Wu W, An D, He Z, Xue Y, Zhang Q, Xie Z. Enhanced mechanical properties of SiC/Al composites at cryogenic temperatures. Ceram Int. 2019. https://doi.org/10.1016/j.ceram int. 2018.10.233.
  • 2. Gong D, Cao Y, Qian J, Chao Z, Xiu Z, Jiang L. Microstructural evolution and dimensional stability of 45vol% SiC/Al composites under long-term aging. J Alloys Compd. 2023. https://doi.org/10.1016/j.jallc om.2022.168536.
  • 3. Zahedi A, Javadpour J, Rezaie H, Mazaheri M. The effect of processing conditions on the microstructure and impact behavior of melt infiltrated Al/SiCp composites. Ceram Int. 2011.
  • 4. Hong Y, Liu J, Wu Y. The interface reaction of SiC/Al composites by spark plasma sintering. J Alloys Compd. 2023. https://doi.org/10.1016/j.jallc om.2023.169895.
  • 5. Kang P, Zhao Q, Guo S, Xue W, Liu H, Chao Z, Jiang L, Wu G. Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design. Ceram Int. 2021. https:// doi.org/10.1016/j.ceram int. 2020.09.240.
  • 6. Ren S, He X, Qu X, Li Y. Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration. J Alloys Compd. 2008.
  • 7. Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M. Processing of Al/SiC composites in continuous solid-liquid co-existent state by SPS and their thermal properties. Composites B Engineering. 2023. https://doi.org/10.1016/j.compositesb. 2012.02.004.
  • 8. Kumaresan G, Arul KB. Investigations on mechanical and wear properties of Al matrix composites reinforced with hybrid SiC and Al2O3 micro-particles. Inter Metalcast. 2023. https:// doi. org/10.1007/ s40962- 022- 00817-6.
  • 9. Liu P, Wang A, Xie J, Hao S. Characterization and evaluation of interface in SiCp/Al composite. Trans Nonferrous Met Soc China. 2015. https:// doi. org/ 10. 1016/ S1003- 6326(15) 63740-2.
  • 10. Asafa TB, Durowoju MO, Diouf S, Shongwe MB, Bayode BL, Oladosu KO, Langa T, Olubambi PA, Ismail OS, Ajala MT, Olukokun TO, Ibn Shamsah SM, Sadiku ER. Development, characterization and comparison of spark plasma-sintered Gr-Cu and Gr-Al composites reinforced with SiC and ZrB2 particles for thermal management. J Mater Sci: Mater Electron. 2021. https://doi. org/ 10. 1007/ s10854- 020- 05205-6.
  • 11. Venkatesh VSS, Deoghare AB. Microstructural characterization ad mechanical behaviour of SiC and kaoline reinforced aluminium metal matrix composites fabricated through powder metallurgy technique. SILICON. 2022. https:// doi. org/ 10. 1007/s12633- 021- 01154-9.
  • 12. Chintada S, Dora SP, Kare D. Mechanical behavior and metallographic characterization of microwave sintered Al/SiC composite materials – an experimental approach. SILICON. 2022. https://doi. org/ 10.1007/ s12633-021-01409-5.
  • 13. Mao X, Hong Y, Wang B, Liu J, Zhang Y, Feng D, Yang L, Shi C, Wu Y, Tang W. Fabrication, microstructures and properties of 50 vol.-% SiCp/6061Al composites via a pressureless sintering technique. Powder Metall Prog. 2017. https:// doi. org/ 10.1080/00325 899.2017.13648 95.
  • 14. Jafari F, Sharifi H, Reza Saeri M, Tayebi M. Effect of reinforcement volume fraction on the wear behavior of Al-SiCp composites prepared by spark plasma sintering. SILICON. 2018. https:// doi.org/ 10.1007/s12633- 018-9779-2.
  • 15. Oliver UC, Sunday AV, Christain EIEI, Elizabeth MM. Spark plasma sintering of aluminium composites - a review. Int J Adv Manuf Technol. 2021. https:// doi. org/10.1007/s00170- 020-06480-7.
  • 16. Ujah Chika O, Popoola PA, Popoola O, Uyor UO. Mechanical and thermal behaviors of Ti36-Al16-V16-Fe16-Cr16 high entropy alloys fabricated by spark plasma sintering: An advanced material for high temperature/strength applications. J Compos Mater. 2022. https://doi.org/ 10.1177/00219 98322 111149.
  • 17. Hong Y, Wang W, Liu J, Tang W, Wu Y. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC. Trans Nonferrous Met Soc China. 2019. https:// doi. org/ 10. 1016/ S1003-6326(19) 65003-X.
  • 18. Sun J, Chen G, Wang B, Chen G, Tang W. Fabrication, microstructures, and properties of 50 vol.% SiCp/6061Al composites via hot pressing. J Mater Eng Perform. 2019. https://doi.org/10.1007/s11665-019-04071-6.
  • 19. Alizadeh A, Khayami A, Karamouz M, Hajizamani M. Mechanical properties and wear behavior of Al5083 matrix composites reinforced with high amounts of SiC particles fabricated by combined stir casting and squeeze casting; A comparative study. Ceram Int. 2022. https:// doi. org/ 10.1016/j.ceram int. 2021. 09. 093.
  • 20. Chen R, Iwabuchi A, Shimizu T, Seop-Shin H, Mifune H. The sliding wear resistance behavior of NiAI and SiC particles reinforced aluminum alloy matrix composites. Wear. 1997;213:175-84.
  • 21. Ghosh SK, Saha P, Sutradhar G. Study of Tribological characteristics of Al-SiC metal matrix composite. Int J Adv Mater Res. 2015;1:53-8.
  • 22. Smrutiranjan P, Tapan KB, Prasanta S, Goutam S. Effect of SiC weight percentage on tribological properties of Al-SiC metal matrix composites under acid environment. J Tribol. 2017;13:21-35.
  • 23. Leszczyńska-Madej B, Madej M, Garbiec D. Tribological properties of spark plasma sintered Al-SiC composites. Materials. 2022. https:// doi. org/ 10. 3390/ ma132 14969.
  • 24. Kare D, Chintada S, Dora SP. Damping behavior of Al/SiC composites fabricated by powder metallurgy. SILICON. 2022. https://doi. org/ 10. 1007/ s12633- 021- 01497-3.
  • 25. Urena A, Martınez E, Rodrigo P, Gil L. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos Sci Technol. 2004.https://doi. org/10.1016/j.compscitech. 2004. 01. 010.
  • 26. Tham L, Gupta M, Cheng L. Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Mater. 2001. https:// doi.org/ 10.1016/ S1359-6454(01) 00221-X.
  • 27. Urena A, Escalera M, Gil L. Oxidation barriers on SiC particles for use in aluminium matrix composites manufactured by casting route: Mechanisms of interfacial protection. J Mater Sci. 2002. https:// doi. org/ 10.1023/A:10206.12819 045.
  • 28. Baker AG. Study of mechanical and physical properties for SiC/Al composites. Int J Adv Appl Sci. 2013. https:// doi. org/ 10.11591/ijaas. v2. i2. pp67-72.
  • 29. Leszczyńska-Madej B, Garbiec D, Madej M. Effect of sintering temperature on microstructure and selected properties of spark plasma sintered Al-SiC composites. Vacuum. 2019. https:// doi.org/ 10.1016/j. vacuum. 2019. 03. 033.
  • 30. Bedir F. Characteristic properties of Al-Cu-SiCp and Al-Cu-B4Cp composites produced by hot pressing method under nitrogen atmosphere. Mater Des. 2007. https:// doi. org/ 10.1016/j.matdes.2006.01.003.
  • 31. Pieczonka T. Powder metallurgy processing of aluminium, Polish Metall. 2006-2010 Time worldwide economic crisis; 2007, pp. 37-57.
  • 32. Pieczonka T, Kazior J. Sintering atmosphere effects on densification of Al-SiC composites. Int Sch Sci Res Innov. 2014;8:283-6.
  • 33. Shaffer GB, Hall BJ. The influence of the atmosphere on the sintering of aluminium. Metall Mater Trans. 2001. https:// doi. org/10.1007/ s11661-002-0314-z.
  • 34. Siddesh Kumar NG, Ram Prabhu T, Mishra RK, Eswaraprasad N, Shiva Shankar GS, Basavarajappa S. Analysis of dry sliding wear behavior of the nano composites using statistical methods with an emphasis on temperature effects. Measurement. 2018. https:// doi.org/ 10.1016/j. measu rement. 2018.06.064.
  • 35. Jerome S, Ravisankar B, Kumar Mahato P, Natarajan S. Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al-TiC composites. Tribol Int. 2010. https://doi. org/ 10.1016/j. tribo int. 2010.05.007.
  • 36. Abarghouie SMRM, Reihani SMS. Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures. J Alloy Compd. 2010. https:// doi.org/10.1016/j.jallc om. 2010.04.097.
  • 37. Dinaharan I, Gladston JAK, Selvam JDR, Jen TCh. Influence of particle content and temperature on dry sliding wear behavior of rice husk ash reinforced AA6061 slurry cast aluminum matrix composites. Tribol Int. 2023. https:// doi. org/ 10.1016/j. tribo int. 2023.108406.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d90b6aae-16fe-4dcb-8bd2-74045171a040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.