Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Optymalizacja filtracji cząstek stałych: ocena skuteczności odstępu między elektrodami w systemach usuwania pyłu za pomocą wyładowań koronowych
Języki publikacji
Abstrakty
This comprehensive study delves into the efficiency of an electrode-based dust removal system, with a specific focus on its capability to filter various sizes of particulate matter: PM1, PM2.5, and PM10. Employing an innovative Corona discharging technology, the research critically evaluates how different electrode spacings influence the efficacy of particle removal. Conducted in a controlled environment, the experiments encompassed a range of electrode distances to ascertain their impact on reducing particle sizes commonly found in indoor air. The methodology involved systematic testing of electrode spacings at 2 cm, 3 cm, and 6 cm, across different particulate matter concentrations. The research utilized a combination of natural sedimentation in control scenarios and active filtration in experimental setups to measure the effectiveness of the dust removal system. Key parameters such as particle charge, airflow dynamics, and the strength of the electrical field across the electrodes were meticulously observed and analyzed. The results of this investigation reveal that electrode spacing is a critical factor in optimizing the removal efficiency of particulate matter. Particularly, the 3 cm electrode spacing emerged as the most effective across all particle sizes, indicating its potential as an optimal configuration for air purification systems. This finding underscores the necessity of a balanced approach in the design of such systems, where both the electric field strength and airflow dynamics are harmoniously aligned. This study contributes significantly to the field of environmental health and indoor air quality control. The insights gleaned from the research provide a foundation for developing more efficient air purification systems, tailored to varying environmental conditions and particulate compositions. The findings also pave the way for future research, exploring the impact of other environmental variables on the performance of electrode-based dust removal systems.
To kompleksowe badanie zagłębia się w efektywność systemu usuwania kurzu opartego na elektrodach, ze szczególnym uwzględnieniem jego zdolności do filtrowania różnych rozmiarów cząstek stałych: PM1, PM2.5i PM10. Wykorzystując innowacyjną technologię ładowania Coronadish, badanie krytycznie ocenia, jak różne odległości między elektrodami wpływają na skuteczność usuwania cząstek. Przeprowadzone w kontrolowanym środowisku eksperymenty obejmowały szereg odległości elektrod, aby ustalić ich wpływ na redukcję rozmiarów cząstek powszechnie występujących w powietrzu w pomieszczeniach. Metodologia obejmowała systematyczne testowanie odstępów między elektrodami o wartościach 2 cm, 3 cm i 6 cm, w różnych stężeniach cząstek stałych. Badanie wykorzystywało połączenie naturalnej sedymentacji w scenariuszach kontrolnych i aktywnej filtracji w układach eksperymentalnych, aby zmierzyć skuteczność systemu usuwania kurzu. Kluczowe parametry, takie jak ładunek cząstek, dynamika przepływu powietrza i siła pola elektrycznego na elektrodach, były dokładnie obserwowane i analizowane. Wyniki tego dochodzenia ujawniają, że odstęp między elektrodami jest kluczowym czynnikiem w optymalizacji efektywności usuwania cząstek stałych. Szczególnie odstęp elektrod 3 cm okazał się najskuteczniejszy we wszystkich rozmiarach cząstek, wskazując na jego potencjalne zastosowanie jako optymalnej konfiguracji dla systemów oczyszczania powietrza. Wynik ten podkreśla konieczność zrównoważonego podejścia w projektowaniu takich systemów, gdzie zarówno siła pola elektrycznego, jak i dynamika przepływu powietrza są harmonijnie dostosowane. To badanie znacząco przyczynia się do dziedziny zdrowia środowiskowego i kontroli jakości powietrza w pomieszczeniach. Wnioski płynące z badania stanowią podstawę do opracowania bardziej efektywnych systemów oczyszczania powietrza, dostosowanych do różnorodnych warunków środowiskowych i składów cząstek stałych. Wyniki te również otwierają drogę do przyszłych badań, badających wpływ innych zmiennych środowiskowych na wydajność systemów usuwania kurzu opartych na elektrodach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
133--139
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- School of Electronic Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
autor
- Department of Telecommunication Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
autor
- Department of Electrical Engineering, Srinakharinwirot University, Nakhon Nayok, Thailand
Bibliografia
- [1] Xuanxuan, N., Jiayou, Z., Shihe, H., Kai, D,, Xinguo, L., Xiaoming, Y., Development of Nasal Vaccines and the Associated Challenges, Pharmaceutics, 14 (2022), 1983
- [2] Jintuo, Z., Pengli, J., Yaxin, H., Xinjian , H., Liang, W., Ruxue, Z., Jinyu, L., Performance of a new model of nasal filter when challenged against PM1 aerosols, Environmental Pollutants and Bioavailability, 33 (2021), NO. 1, 388–394
- [3] Padmanabhan, S., Francesco, B., Nurshahidah, A., Alden, T., Sakinah, M., Goh Lay, B., Enrico, I., Alfredo, P., A new aerodynamic endonasal filtration technology for protection against pollutants and respiratory infectious agents: evaluation of the particle filtration efficacy, Frontiers in Medical Technology, (2023), 8
- [4] Cui, G., Zilong, Z., Alexis K H, L., Chang Q, Lin., Yuan Chieh, C., Jimmy, C., Wun Kai, J., Tony, T., Eng-Kiong, Y., Ta-Chien, C., Ly-Yun C., Xiang Qian, L., Lancet Planet Health, 2 (2018), e114–25
- [5] Sun Young, K., Sung Hwan, J., Particulate-Matter Related Respiratory Diseases, Tuberculosis and Respiratory Diseases, 83 (2020), 116-121
- [6] Klára, S., Nikolett, G., József, F., Tünde, V., Patrícia, N., József Á, B., László G, P., Gábor J, S., Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer, Journal of Clinical Medicine, 10 (2021), 2889
- [7] Mei, W., Zhaofang, C., Wei, S., ꞏ Dezi, H., Lei, H., Yunhui, L., A on Cadmium Exposure in the Population and Intervention Strategies Against Cadmium Toxicit, Bulletin of Environmental Contamination and Toxicology, 106 (2021), 65-74
- [8] Jessica, B., Emmanuel, S., Renald, B., Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6 (2020), e04691
- [9] Nicole Pauly, H., Impaired visibility: the air pollution people see, Atmospheric Environment, 43 (2009), 182-195
- [10] Wan-Sik, W., Rosy O., Woojoo, L., Sungkwan K., Pei-Chen, S., Yong-Jin, Y., Hygroscopic properties of particulate matter and efects of their interactions with weather on visibility, Scientifc Reports, 11 (2021), 16401
- [11] Erin E, M., Randall V, M., Joseph V, S., Richard, B., Steven J, S., Patrick, O., Melanie S, H., Aaron van , D., Liam, B., Viral, S., Lyatt, J., Gan, L., Fangqun, Y., Jamiu A, A., Jintai, L., Michael, B., Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales, Nature Communication, 12 (2021), 3594
- [12] Ioannis, M., Elisavet, S., Agathangelos, S., Eugenia, B., Environmental and Health Impacts of Air Pollution: A Review, Frontiers Public Health, 8 (2020), 14
- [13] Muhammad Ehsan, M., Human health and environmental impacts of coal combustion and post-combustion wastes, Journal of Sustainable Mining, 17 (2018), 87-96
- [14] Susan C, A., Joshua, M., Ray, M., Li, D., Daven K, H., Forrest, L., Christopher S, M., Lisa, E., Vicente, F., Zbigniew, K., Chris, H., Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545 (2017), 467-471
- [15] Fengzhu, T., Yuming, Guo., Wei, Z., Xingyan, X., Ming, Z., Fan, M., Sicen, L., Shanshan, L., Lidia, M., Large-Scale Spraying of Roads with Water Contributes to, Rather Than Prevents, Air Pollution, Toxics, 9, (2021), 122
- [16] Shaocai, Y., Water spray geoengineering to clean air pollution for mitigating haze in China’s cities, Environ Chem Let, 12 (2014), 109-116
- [17] Chiu-Fan, C., Chun-Hsiang, H., Yu-Jung, C., Chao-Hsien, Lee., David Lin, Lee., Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration, International Journal of Environmental Research and Public Healty, 19 (2022), 11517
- [18] Bangwoo, H., Keejung, H., Dongho, S., Hak-Joon, K., YongJin, K., Sang Bok, K., Sangwoo, K., Cheong-Ha, H., KwangChul, N., Field Tests of Indoor Air Cleaners for Removal of PM2.5 and PM10 in Elementary School Classrooms in Seoul, Korea, Aerosol and Air Quality Research, 22 (2022), 210383
- [19] Stuti, D., Himanshi, R., Ajay, T., Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution, Heliyon, 7 (2021), e07976
- [20] Prabjit, B., Enkhjargal, G., Chimedsuren, O., Bayarkhuu, L., Bolor, B., Gerel, N., Buyantushig, B., Jargalsaikhan, G., Tsogtbaatar, B., Craig, J., Patricia A, J., Bruce P, L., Tim K, T., Scott A, V., Glenys M, W., Weiran, Y., Christopher D, P., Patrick J, P., Young Man, R., Ryan W, A., The effect of portable HEPA filter air cleaners on indoor PM2.5 concentrations and second hand tobacco smoke exposure among pregnant women in Ulaanbaatar, Mongolia: The UGAAR randomized controlled trial, Science of The Total Environment, 615 (2018), 1379-1389
- [21] Chao-Yun, L., Chao-Heng, T., Kai-Feng, W, The Assessment of Indoor Formaldehyde and Bioaerosol Removal by Using Negative Discharge Electrostatic Air Cleaners , International Journal of Environmental Research and Public Healty, 19 (2022), 7209
- [22] Yen-Tang, C., Cheng-Lung, L., Shang-Jung, L., Da-Sheng, L., Electrostatic Precipitator Design Optimization for the Removal of Aerosol and Airborne Viruses, Sustainability, 15 (2023), 8432
- [23] Hernández-Díaz, D., Martos-Ferreira, D., Hernández-Abad, V., Villar-Ribera, R., Tarrés, Q., Rojas-Sola, J.I., Indoor PM2.5 removal efficiency of two different non-thermal plasma systems, Journal of Environmental Management, 278 (2021), 111515
- [24] Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A., Czech , T., Two-stage electrostatic precipitator with dual-corona particle precharger for PM2.5 particles removal, Journal of Cleaner Production, 164 (2017), 1645-1664
- [25] Jeong, Hoon B., Jungho, H., Jae Hong, P., Ki Young, Y., Byung Ju, K., Suk Hoon, Kang., Jun Ho, J., Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge, Journal of Aerosol Science, 37 (2006), 1618-1628
- [26] Jakkarin, S., Thanaset, T., Santalunai, S., Thongsopa, C., Experiment of Induction Heating Application for Heating Multilayer Metallic Hollow Altered Cylinder, The 5th International Conference on Industrial Engineering and Applications (ICIEA), National University of Singapore, April 2628, 2018.
- [27] Santalunai, S., Thosdeekoraphat, T., Thongsopa, C., Thermal Analysis of Inductive Coils Array against Cylindrical Material Steel for Induction Heating Applications. Applied Mechanics and Materials, 330, (2013) 754-759.
- [28] Poungprakhon, N., Thongsopa, C., Santalunai, S., Thosdeekoraphat, T., Santalunai, N., Chaipanya, P., The Study of Water Reconditioning using Magnetic Field for Plant Industry, Przegląd Elektrotechniczny, 99, (2023), No. 7, 59-64
- [29] Kotchapradit, S., Thosdeekoraphat, T., Santalunai, S., Thongsopa, C., Improvement of Electric Field Focusing for Deep Hyperthermia in Breast Cancer Treatment by Using Microwave Dielectric Heating with Curved Plate Applicator, Asia-Pacific Microwave Conference, (2018), 1474-1476
- [30] Kotchapradit, S., Thosdeekoraphat, T., Santalunai, S., Thongsopa, C., Analysis of High Frequency Curved Plate Applicator for Deep Hyperthermia in Breast Cancer Treatment by Using Dielectric Heating, International Symposium on Antennas and Propagation, (2018), 8627807
- [31] Santalunai, S., Thongsopa, C., Thosdeekoraphat, T., The efficiency of dielectric heating by using symmetrically electric power ports on electrode plate for pest control, 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, (2015), 1-4
- [32] Seehanan, T., Fhafhiem, N., Santalunai, S., Krachodnok, P., Analysis of electric fields distribution by using EBG structure for dielectric heating applications, 4th International Conference on Engineering, Applied Sciences and Technology: Exploring Innovative Solutions for Smart Society, (2018), 1-4
- [33] Santalunai, N., Santalunai, S., Meesawad, P., Tongsopa, C., Santalunai, S., Plus-Shape of Mushroom-Like EBG with Square Microstrip Emitter to Expand the Working Space in Dielectric Heating Applications, International Journal of Intelligent Engineering and Systems, 14 (2021), No. 3, 189-200
- [34] Santalunai, N., Santalunai, S., Adisak, R., Pichaya C., Meesawad, P., Tongsopa, C., Tajchai, P., Investigation on Characteristics of Metamaterials by Using Metallic Rod Structure for Antenna Engineering, Przegląd Elektrotechniczny, 98, (2022), No. 5, 103-109.
- [35] N. Santalunai, S. Santalunai, W. Naktong, P. Chaipanya, P. Mesawad and P. Krachodnok, Advancements in Mobile Communication: A Novel Sectoral Antenna Design Incorporating Magneto-Electric Curved Strip Dipoles and PRS Superstrate, IEEE Access, 12 (2024), 29837-29849.
- [36] Sutacha, C., Santalunai, S., Thongsopa, C., Thosdeekoraphat, T., Penkhrue, W., Inactivation of Contaminated Fungi in Rice Grains by Dielectric Heating, Applied Sciences, 12 (2022), No. 20, 10478
- [37] Yodrot, T., Santalunai, S., Thongsopa, C., Thosdeekoraphat, T., Santalunai, N., Measurement of Dielectric Properties in Soil Contaminated by Biodiesel-Diesel Blends Based on Radio Frequency Heating, Applied Sciences, 13 (2023), no. 3, 1248
- [38] Ratniyomchai, K., Santalunai, S., Thosdeekoraphat, T., Thongsopa, C., Optimization of capacitor copper plate for dielectric heating to eliminate insect, Applied Mechanics and Materials, 343 (2013), 101-105
- [39] Srisuma, C., Santalunai, S., Thosdeekoraphat, T., Thongsopa, C., The Analysis and Design of Milk Pasteurization System by Using Radio Frequency Electric Fields, The 2017 Asia-Pacific International EMC Symposium, (2017), 158-160
- [40] Ohring, M., Engineering Materials Science. New York: Academic Press, 1995.
- [41] Fatemeh, R., Patrick, V., Anton, N., Rino, M., Nathalie De, G., Applications of Plasma-Liquid Systems: A Review, Materials 12 (2019), 2751
- [42] Yagov, V. V., Getsina, M. L., Zuev, B. K., Use of Electrolyte Jet Cathode Glow Discharges as Sources of Emission Spectra for Atomic Emission Detectors in Flow-Injection Analysis, Journal of Analytical Chemistry, 59 (2004), No. 11, 1037-1041
- [43] Yuanwei, L., Dinghui, W., Yuting, W., Chongfang, M., Xingjuan, Z., Chunxin, Yang., Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO, Hindawi Publishing Corporation International Journal of Photoenergy, (2012), 8 page
- [44] Alessandro Estarque de, O., Vádila Giovana, G., Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation, Journal of Electrostatics, 96 (2018), 1-9
- [45] Hamedi Estakhrsar, M.H., Rafee, R., Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels, Applied Mathematical Modelling, 40 (2016), 685-699
- [46] Marco, B., Federico, Messanelli,. Compared ionic wind measurements on multi-tip corona and DBD plasma actuators, Journal of Electrostatics, 76 (2015), 278-287
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d90acf77-36ac-4cf1-8a0c-6d5f0e0e8a89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.