PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New constitutive model based on disturbed state concept for shear deformation of rock joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical behavior and constitutive relation of rock joints have caught more and more attention in the field of geotechnical engineering. The disturbed state concept (DSC) theory offers a powerful tool for building a constitutive model to interpret the mechanical response of geomaterials. In this paper, a new constitutive model for joint shear deformation was developed based on the DSC theory. The characteristics of quasi-elastic phase, pre-peak hardening phase, peak shear strength, post-peak softening phase and residual strength during the whole process of joint shear deformation are considered in this model. In the framework of this shear constitutive model, the rock material was assumed to consist of two kinds of micro-units with different mechanical responses, namely the relatively intact unit and the fully adjusted unit. Subsequently, the DSC theory was used to connect the mechanical behavior of micro-units with the macroscopic joint shear deformation characteristics, and a disturbance factor was introduced to reveal the disturbed state evolution process inside the rock. In addition, the proposed DSC model was simple in form, less in parameters and reasonable in physical meaning. The model was cross-validated by experimental data of different kinds of natural joints and artificial joint replicas. Finally, the model is compared with existing models, and the model effectiveness is quantitatively evaluated through statistical indicators. The values of R2 are greater than 0.9, and the AAREP and RMSE of the proposed DSC model are closer to 0 than those of other models. The research results can provide a valuable reference for further understanding of shear deformation mechanism.
Rocznik
Strony
art. no. e26, 2023
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
Bibliografia
  • 1. Fan X, Yu H, Deng Z, He Z, Zhao Y. Cracking and deformation of cuboidal sandstone with a single nonpenetrating faw under uniaxial compression. Theor Appl Fract Mec. 2022;119: 103284. https://doi.org/10.1016/j.tafmec.2022.103284.
  • 2. Chen Y, Lin H, Wang Y, Xie S, Zhao Y, Yong W. Statistical damage constitutive model based on the Hoek-Brown criterion. Arch Civ Mech Eng. 2021;21(3):117. https://doi.org/10.1007/s43452-021-00270-y.
  • 3. Keneti A, Sainsbury BA. Review of published rockburst events and their contributing factors. Eng Geol. 2018;246:361-73. https://doi.org/10.1016/j.enggeo.2018.10.005.
  • 4. Saadat M, Taheri A. A cohesive discrete element based approach to characterizing the shear behavior of cohesive soil and clay-infilled rock joints. Comput Geotech. 2019;114: 103109. https://doi.org/10.1016/j.compgeo.2019.103109.
  • 5. Sow D, Carvajal C, Breul P, Peyras L, Rivard P, Bacconnet C, et al. Modeling the spatial variability of the shear strength of discontinuities of rock masses: application to a dam rock mass. Eng Geol. 2017;220:133-43. https://doi.org/10.1016/j.enggeo.2017.01.023.
  • 6. Xing Y, Kulatilake P, Sandbak LA. Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine. Eng Geol. 2018;238:62-75. https://doi.org/10.1016/j.enggeo.2018.03.010.
  • 7. Day JJ, Diederichs MS, Hutchinson DJ. New direct shear testing protocols and analyses for fractures and healed intrablock rockmass discontinuities. Eng Geol. 2017;229:53-72. https://doi.org/ 10.1016/j.enggeo.2017.08.027.
  • 8. Han W, Jiang YJ, Luan HJ, Liu JK, Wu XL, Du YT. Fracture evolution and failure mechanism of rock-like materials containing cross-faws under the shearing effect. Theor Appl Fract Mec. 2020. https://doi.org/10.1016/j.tafmec.2020.102815.
  • 9. Fathipour-Azar H. New interpretable shear strength criterion for rock joints. Acta Geotech. 2022;17(4):1327-41. https://doi.org/10.1007/s11440-021-01442-z.
  • 10. Xie S, Han Z, Hu H, Lin H. Application of a novel constitutive model to evaluate the shear deformation of discontinuity. Eng Geol. 2022. https://doi.org/10.1016/j.enggeo.2022.106693.
  • 11. Patton FD, editor. Multiple modes of shear failure in rock. Proceeding of the1st Congress of International Society of Rock Mechanics; 1966.
  • 12. Develi K. Computation of direction dependent joint surface parameters through the algorithm of triangular prism surface area method: a theoretical and experimental study. Int J Solids Struct. 2020;202:895-911. https://doi.org/10.1016/j.ijsolstr.2020.06.038.
  • 13. Selvadurai APS, Yu Q. Mechanics of a discontinuity in a geomaterial. Comput Geotech. 2005;32(2):92-106. https://doi.org/10. 1016/j.compgeo.2004.11.007.
  • 14. Asadollahi P, Tonon F. Constitutive model for rock fractures: Revisiting Barton’s empirical model. Eng Geol. 2010;113(1):11-32. https://doi.org/10.1016/j.enggeo.2010.01.007.
  • 15. Lin QB, Cao P, Wen GP, Meng JJ, Cao RH, Zhao ZY. Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression. Int J Rock Mech Min Sci. 2021. https://doi.org/10.1016/j.ijrmms. 2021.104621.
  • 16. Tang ZC, Zhang YB. Temperature-dependent peak shear-strength criterion for granite fractures. Eng Geol. 2020. https://doi.org/10.1016/j.enggeo.2020.105552.
  • 17. Tang ZC, Peng MH, Xiao SG. Basic friction angle of granite fracture after heating and rapid cooling treatments. Eng Geol. 2022. https://doi.org/10.1016/j.enggeo.2022.106626.
  • 18. Mpalaskas AC, Matilzas TE, Van Hemelrijck D, Papakitsos GS, Aggelis DG. Acoustic emission monitoring of granite under bending and shear loading. Arch Civ Mech Eng. 2016;16(3):313-24. https://doi.org/10.1016/j.acme.2016.01. 006.
  • 19. Goodman R. Methods of geological engineering in discontinuous rocks: Goodman, RE Univ. California, Berkeley, USA Textbook. Figs, tabls, refs. St. Paul: West Publishing Co., 1976, XII, 472P. 1976; 13(10):115.
  • 20. Saeb S, Amadei B. Modelling rock joints under shear and normal loading. Int J Rock Mech Min Sci. 1992;29(3):267-78. https://doi.org/10.1016/0148-9062(92)93660-C.
  • 21. Duriez J, Darve F, Donzé F-V. Incrementally non-linear plasticity applied to rock joint modelling. Int J Numer Anal Met. 2013;37(5):453-77. https://doi.org/10.1002/nag.1105.
  • 22. Grujovic N, Divac D, Zivkovic M, Slavkovic R, Milivojevic N, Milivojevic V, et al. An inelastic stress integration algorithm for a rock mass containing sets of discontinuities. Acta Geotech. 2013;8(3):265-78. https://doi.org/10.1007/s11440-012-0194-3.
  • 23. Gens A, Carol I, Alonso E. A constitutive model for rock joints formulation and numerical implementation. Comput Geotech. 1990;9(1-2):3-20. https://doi.org/10.1016/0266-352X(90)90026-R.
  • 24. Wang J, Ichikawa Y, Leung C. A constitutive model for rock interfaces and joints. Int J Rock Mech Min Sci. 2003;40(1):41-53. https://doi.org/10.1016/s1365-1609(02)00113-2.
  • 25. Simon R. Analysis of fault-slip mechanisms in hard rock mining. Canada: McGill University; 1999.
  • 26. Khosravi A, Simon R. Verifcation of the csds model in estimating the postpeak behavior of hard rocks. Int J Geomech. 2018. https://doi.org/10.1061/(asce)gm.1943-5622.0001090.
  • 27. Li Y, Oh J, Mitra R, Hebblewhite B. Experimental studies on the mechanical behaviour of rock joints with various openings. Rock Mech Rock Eng. 2016;49(3):837-53. https://doi.org/10.1007/s00603-015-0781-3.
  • 28. Pouya A, Yazdi PB. A damage-plasticity model for cohesive fractures. Int J Rock Mech Min Sci. 2015;73:194-202. https://doi.org/10.1016/j.ijrmms.2014.09.024.
  • 29. Xie SJ, Lin H, Chen YF, Yong R, Xiong W, Du SG. A damage constitutive model for shear behavior of joints based on determination of the yield point. Int J Rock Mech Min Sci. 2020. https://doi.org/10.1016/j.ijrmms.2020.104269.
  • 30. Desai CS, Fishman KL. Plasticity-based constitutive model with associated testing for joints. Int J Rock Mech Min Sci. 1991;28(1):15-26. https://doi.org/10.1016/0148-9062(91) 93229-y.
  • 31. Roosta RM, Sadaghiani MH, Pak A, Saleh Y. Rock joint modeling using a visco-plastic multilaminate model at constant normal load condition. Geotech Geol Eng. 2006;24(5):1449. https://doi.org/10.1007/s10706-005-1217-8.
  • 32. Fernández LE, Ayala G. Constitutive modeling of discontinuities by means of discrete and continuum approximations and damage models. Int J Solids Struct. 2004;41(5):1453-71. https://doi.org/10.1016/j.ijsolstr.2003.10.010.
  • 33. Fan X, Yang ZJ, Hong M, Yu H, Xie YL. Mechanism of stress distribution and failure around two different shapes of openings within fractured rock-like materials. J Cent South Univ. 2022;29(6):1916-32. https://doi.org/10.1007/s11771-022-5048-z.
  • 34. Zhao YL, Zhang LY, Wang WJ, Liu Q, Tang LM, Cheng GM. Experimental study on shear behavior and a revised shear strength model for inflled rock joints. Int J Geomech. 2020. https://doi.org/10.1061/(asce)gm.1943-5622.0001781.
  • 35. Lei Q, Barton N. On the selection of joint constitutive models for geomechanics simulation of fractured rocks. Comput Geotech. 2022;145: 104707. https://doi.org/10.1016/j.compgeo. 2022.104707.
  • 36. Xie SJ, Lin H, Wang YX, Chen YF, Xiong W, Zhao YL, et al. A statistical damage constitutive model considering whole joint shear deformation. Int J Damage Mech. 2020;29(6):988-1008. https://doi.org/10.1177/1056789519900778.
  • 37. Lin QB, Cao P, Meng JJ, Cao RH, Zhao ZY. Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling. Theor Appl Fract Mec. 2020. https://doi. org/10.1016/j.tafmec.2020.102692.
  • 38. Cao RH, Cao P, Lin H, Ma GW, Zhang CY, Jiang C. Failure characteristics of jointed rock-like material containing multi-joints under a compressive-shear test: experimental and numerical analyses. Arch Civ Mech Eng. 2018;18(3):784-98. https://doi.org/10.1016/j.acme.2017.12.003.
  • 39. Xie SJ, Lin H, Wang YX, Cao RH, Yong R, Du SG, et al. Nonlinear shear constitutive model for peak shear-type joints based on improved Harris damage function. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00097-z.
  • 40. Xie SJ, Han ZY, Chen YF, Wang YX, Zhao YL, Lin H. Constitutive modeling of rock materials considering the void compaction characteristics. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00378-9.
  • 41. Xie S, Lin H, Cheng C, Chen Y, Wang Y, Zhao Y, et al. Shear strength model of joints based on Gaussian smoothing method and macro-micro roughness. Comput Geotech. 2022;143: 104605. https://doi.org/10.1016/j.compgeo.2021.104605.
  • 42. Park JW, Lee YK, Song JJ, Choi BH. A constitutive model for shear behavior of rock joints based on three-dimensional quantification of joint roughness. Rock Mech Rock Eng. 2013;46(6):1513-37. https://doi.org/10.1007/s00603-012-0365-4.
  • 43. Desai C, editor. A consistent fnite element technique for work-softening behavior. Proc., Int. Conf. on Computational Methods in Nonlinear Mechanics; 1974: University of Texas, Austin.
  • 44. Sane SM, Desai CS, Jenson JW, Contractor DN, Carlson AE, Clark PU. Disturbed state constitutive modeling of two Pleistocene tills. Quaternary Sci Rev. 2008;27(3):267-83. https://doi.org/10.1016/j.quascirev.2007.10.003.
  • 45. Desai CS, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior. Int J Solids Struct. 1996;33(11):1619-50. https://doi.org/10.1016/0020-7683(95)00115-8.
  • 46. Xiao Y, Desai CS. Constitutive modeling for overconsolidated clays based on disturbed state concept. I: theory. Int J Geomech. 2019. https://doi.org/10.1061/(asce)gm.1943-5622.0001474.
  • 47. Fan R-D, Liu M, Du Y-J, Horpibulsuk S. Estimating the compression behaviour of metal-rich clays via a Disturbed State Concept (DSC) model. Appl Clay Sci. 2016;132-133:50-8. https://doi.org/10.1016/j.clay.2016.05.014.
  • 48. Huang M, Jiang S, Xu C, Xu D. A new theoretical settlement model for large step-tapered hollow piles based on disturbed state concept theory. Comput Geotech. 2020;124: 103626. https://doi. org/10.1016/j.compgeo.2020.103626.
  • 49. Desai CS. Disturbed state concept as unifed constitutive modeling approach. J Rock Mech Geotech. 2016;8(3):277-93. https://doi.org/10.1016/j.jrmge.2016.01.003.
  • 50. Oh J, Cording EJ, Moon T. A joint shear model incorporating small-scale and large-scale irregularities. Int J Rock Mech Min Sci. 2015;76:78-87. https://doi.org/10.1016/j.ijrmms.2015.02.011.
  • 51. AC10520942. Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force. ASTM Internat.; 2008.
  • 52. Liu D, He M, Cai M. A damage model for modeling the complete stress-strain relations of brittle rocks under uniaxial compression. Int J Damage Mech. 2018;27(7):1000-19. https://doi.org/10.1177/1056789517720804.
  • 53. Liu DQ, Wang Z, Zhang XY. Characteristics of strain softening of rocks and its damage constitutive model. Rock Soil Mech. 2017;38(10):2901-8. https://doi.org/10.16285/j.rsm.2017.10.017.
  • 54. Lezon CE, Pintos PM, Bozzini C, Romero AA, Casavalle P, Friedman SM, et al. Mechanical mandible competence in rats with nutritional growth retardation. Arch Oral Biol. 2017;80:10-7. https://doi.org/10.1016/j.archoralbio.2017.03.009.
  • 55. Zhao YL, Zhang CS, Wang YX, Lin H. Shear-related roughness classifcation and strength model of natural rock joint based on fuzzy comprehensive evaluation. Int J Rock Mech Min Sci. 2021. https://doi.org/10.1016/j.ijrmms.2020.104550.
  • 56. Singh HK, Basu A. A comparison between the shear behavior of ‘real’ natural rock discontinuities and their replicas. Rock Mech Rock Eng. 2018;51(1):329-40. https://doi.org/10.1007/s00603-017-1334-8.
  • 57. Usefzadeh A, Yousefzadeh H, Salari-Rad H, Sharifzadeh M. Empirical and mathematical formulation of the shear behavior of rock joints. Eng Geol. 2013;164:243-52.
  • 58. Zhou H, Cheng GT, Zhu Y, Chen J, Lu JJ, Cui GJ, et al. Experimental study of shear deformation characteristics of marble dentate joints. Rock Soil Mech. 2019;40(3):852-60. https://doi.org/10.16285/j.rsm.2017.0964.
  • 59. Gui Y, Xia C, Ding W, Qian X, Du S. Modelling shear behaviour of joint based on joint surface degradation during shearing. Rock Mech Rock Eng. 2019;52(1):107-31. https://doi.org/10.1007/s00603-018-1581-3.
  • 60. Yang Z, Wu Y, Zhou Y, Tang H, Fu S. Assessment of machine learning models for the prediction of rate-dependent compressive strength of rocks. Minerals. 2022;12(6):731.
  • 61. Chen YF, Lin H, Xie SJ, Ding XR, He DL, Yong WX, et al. Efect of joint microcharacteristics on macroshear behavior of singlebolted rock joints by the numerical modelling with PFC. Environ Earth Sci. 2022. https://doi.org/10.1007/s12665-022-10411-y.
  • 62. Tang ZC, Zhang QZ, Peng J, Jiao YY. Experimental study on the water-weakening shear behaviors of sandstone joints collected from the middle region of Yunnan province P. R. China. Eng Geol. 2019;258: 105161. https://doi.org/10.1016/j.enggeo.2019.105161.
  • 63. Mehrishal S, Sharifzadeh M, Song J-J, Shahriar K. An investigation of the possibility of estimating the residual shear strength of rough joints using planar small joint in limestone rocks. J Struct Geol. 2021;142: 104220. https://doi.org/10.1016/j.jsg.2020.104220.
  • 64. Zhang C, Bai Y, An Y, Wang H, Zeng X. A new method for evaluating rock brittle characteristics based on full stress-strain curve. J Highw Transp Res Develop. 2021;38(3):63-72. https://doi.org/10.3969/j.issn.1002-0268.2021.03.009.
  • 65. Amadei B, Wibowo J, Sture S, Price RH. Applicability of existing models to predict the behavior of replicas of natural fractures of welded tuf under different boundary conditions. Geotech Geol Eng. 1998;16(2):79-128.
  • 66. Grasselli G, Egger P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci. 2003;40(1):25-40. https://doi.org/10.1016/S1365-1609(02)00101-6.
  • 67. Tang Z, Xia C, Xiao S. Constitutive model for joint shear stress-displacement and analysis of dilation. Chin J Rock Mech Eng. 2011;30(5):917-25.
  • 68. Xie SJ, Lin H, Chen YF, Wang YX. A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. J Cent South Univ. 2021;28(5):1448-58. https://doi.org/10.1007/s11771-021-4708-8.
  • 69. Xie S, Han Z, Lin H. A quantitative model considering crack closure efect of rock materials. Int J Solids Struct. 2022;251: 111758. https://doi.org/10.1016/j.ijsolstr.2022.111758.
  • 70. Naderi M, Khamehchi E, Karimi B. Novel statistical forecasting models for crude oil price, gas price, and interest rate based on meta-heuristic bat algorithm. J Petrol Sci Eng. 2019;172:13-22. https://doi.org/10.1016/j.petrol.2018.09.031.
  • 71. Ali E, Guang W, Ibrahim A. Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: a comparative study. Eng Geol. 2014;183:230-40. https://doi.org/10.1016/j.enggeo.2014.08.026.
  • 72. Sun Z, Niu D, Wang X, Zhang L, Luo D. Bond behavior of coral aggregate concrete and corroded Cr alloy steel bar. J Build Eng. 2022;61: 105294. https://doi.org/10.1016/j.jobe.2022.105294.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d90aaa93-64be-4cef-a056-5221b45e9a58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.