PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sandy Soil Reclamation Using Biochar and Clay-Rich Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigations on the effects of biochar application in improving the physio-chemical properties of soil have been carried out in many studies; however, there are very few studies on the combined use of both biochar and clay-rich soil for poor nutrient soil reclamation. Therefore, this study demonstrates improved water retention and nutrient retention of sandy soil by using biochar and biochar combined with clay-rich soil. The experiments were conducted on a small scale (greenhouse) with nine different application rates of biochar and clay-rich soil were mixed and then cultivated peanut, along with the drip irrigation technique using field moisture limit (about 70-80%) was applied under the condition of ensuring a sufficient supply of NPK for plant’s growth. The results showed that at the rates from 10.0-15.0% (w/w) clay-rich soil mixed with from 0.5-1.5% (w/w) of biochar applied to the tested sandy soil resulted in the positive effects on soil water holding, bulk density, permeability, pH, CEC, OM, total N, total P and peanut yield. The physical and chemical characteristics of the tested sandy soil have been improved by time and the application rate of 10.0% clay-rich soil and 0.5% biochar had the highest efficiency of pod fresh weight and pod dry weight during three studied seasons.
Rocznik
Strony
26--35
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Institute for Water Resources Economics and Management, 131 Chua Boc, Dong Da, Ha Noi, Viet Nam
  • Thuyloi University, Vietnam, 175 Tay Son, Dong Da, Ha Noi, Viet Nam
autor
  • Thuyloi University, Vietnam, 175 Tay Son, Dong Da, Ha Noi, Viet Nam
  • Vietnam National University of Agriculture, Trau Quy, Gia Lam, Viet Nam
  • Thuyloi University, Vietnam, 175 Tay Son, Dong Da, Ha Noi, Viet Nam
  • Thuyloi University, Vietnam, 175 Tay Son, Dong Da, Ha Noi, Viet Nam
  • Vietnam National University of Agriculture, Trau Quy, Gia Lam, Viet Nam
Bibliografia
  • 1. Abid M., Danish S., Zafar-Ul-Hye M., Shaaban M., lqbal M.M., Rehim A., Qayyum M.F., Naqqash M.N. 2017. Biochar increased photosynthetic and accessory pigments in tomato (Solanum lycopersicum L.) plants by reducing cadmium concentration under various irrigation waters. Environmental Science and Pollution Research, 24, 22111–22118.
  • 2. Abujabhah I.S., Bound S.A., Doyle R., Bowman J.P. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98, 243–253. https://doi.org/10.1016/j.apsoil.2015.10.021.
  • 3. Atkinson C.J., Fitzgerald J.D., Hipps N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337, 1–18.
  • 4. Basso A.S., Miguez F.E., Laird D.A., Horton R., Westgate M. 2013. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.12026.
  • 5. Blake G.R. 1965. Particle Density and Bulk Density. In: C.A. Black (Ed.), Method of Soil analysis-Part 1-Physical and Mineralogical properties, including Statistics of Measurement and Sampling. American Society of Agronomy, No. 9i, 371–390.
  • 6. Blanco-Canqui H. 2017. Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
  • 7. Bremner J.M. 1965. Total Nitrogen. In: A.G. Norman (Ed.), Methods of soil analysis, Part 2-Chemical and Microbiological properties. American Society of Agronomy, pp. 1149–1178.
  • 8. Broadbent F.E. 1965. Organic Matter. In: A.G. Norman (Ed.), Methods of soil analysis, Part 2-Chemical and Microbiological properties. American Society of Agronomy, pp. 1397–1400.
  • 9. Chapman H. 1965. Cation-Exchange Capacity. American Society of Agronomy, pp. 891–900.
  • 10. Chen H.X., Du Z.L., Guo W., Zhang Q.Z. 2011. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain. Ying Yong Sheng Tai Xue Bao, 22(11), 2930–34.
  • 11. Cheng C.H., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. 2006. Oxidation of Black Carbon by Biotic and Abiotic Processes. Organic Geochemistry, 37(11), 1477–1488.
  • 12. Chintala R., Mollinedo J., Schumacher T.E., Malo D.D., Julson J.L. 2014. Effect of biochar on chemical properties of acidic soil. Journal Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870.
  • 13. Chintala R., Schumacher T.E., Kumar S., Malo D. D., Rice J.A., Bleakley B., Chilom G., Clay D.E., Julson J.L., Papiernik S.K., Gu Z.R. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials, 279, 244–256. https://doi.org/10.1016/j.jhazmat.2014.06.074.
  • 14. Ghorbani M., Asadi H., Abrishamkesh S. 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258–265. https://doi.org/10.1016/j.iswcr.2019.05.005
  • 15. Githinji L. 2014. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457–470.
  • 16. Głąb T., Palmowska J., Zaleski T., Gondek K. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028.
  • 17. Glaser B., Lehr V.I. 2019. Biochar effects on phosphorus availability in agricultural soils: A metaanalysis. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598–019–45693-z.
  • 18. Horák J., Šimanský V., Igaz D. 2019. Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam Haplic Luvisol. Journal of Ecological Engineering, 20(7), 31–38. https://doi.org/10.12911/22998993/109857.
  • 19. Ismail S.M., Ozawa K. 2007. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application. Applied Clay Science, 37(1–2), 81–89. https://doi.org/10.1016/j.clay.2006.12.005.
  • 20. Jeffery S., Verheijen F.G.A., Van der Velde M., Bastos A.C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015.
  • 21. Jindo K., Mizumoto H., Sawada Y., SanchezMonedero M.A., Sonoki T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. https://doi.org/10.5194/bg-11–6613–2014.
  • 22. Kameyama K., Miyamoto T., Shiono T., Shinogi Y. 2012. Influence of Sugarcane Bagasse-derived Biochar Application on Nitrate Leaching in Calcaric Dark Red Soil. Journal of Environmental Quality, 41(4), 1131–1137. https://doi.org/10.2134/jeq2010.0453.
  • 23. Karhu K., Mattila T., Bergström I., Regina K. 2011. Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity-Results from a short-term pilot field study. Ecosystems and Environment, 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005.
  • 24. Laird D.A., Fleming P., Davis D.D., Horton R., Wang B., Karlen D.L. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3–4), 443–449. https://doi.org/10.1016/j.geoderma.2010.05.013.
  • 25. Li Q., Li H., Fu Q., Li T., Liu D., Hou R., Cuia S., Ji Y., Cai Y. 2019. Effects of different biochar application methods on soybean growth indicator variability in a seasonally frozen soil area. https://doi.org/10.1016/j.catena.2019.104307.
  • 26. He L., Liu Y., Zhao J., Bi Y., Zhao X., Wang S., Xing G. 2016. Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biology and Fertility of Soils, 52, 137–149.
  • 27. Liu S., Meng J., Jiang L., Yang X., Lan Y., Cheng X., Chen W. 2017. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116(March), 12–22. https://doi.org/10.1016/j.apsoil.2017.03.020.
  • 28. Liu Z., He T., Cao T., Yang T., Meng J., Chen W. 2017. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. Journal of Soil Science and Plant Nutrition, 17(2), 515–528. https://doi.org/10.4067/S0718–95162017005000037.
  • 29. Loan B.T.P., Ha P.Q., T.T. 2016. Study on the current status and crop structures on sandy soil in the North Central region. Journal of Agriculture and Rural Development, 1, 01–09 (in Vietnamese).
  • 30. Luo X., Liu G., Xia Y., Chen L., Jiang Z., Zheng H., Wang Z. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17(3), 780–789. https://doi.org/10.1007/s11368–016–1361–1.
  • 31. Molnár M., Vaszita E., Farkas É., Ujaczki É., FeketeKertész I., Tolner M., Klebercz O., Kirchkeszner C., Gruiz K., Uzinger N., Feigl V. 2016. Acidic sandy soil improvement with biochar – A microcosm study. Science of the Total Environment, 563–564, 855–865. https://doi.org/10.1016/j.scitotenv.2016.01.091.
  • 32. Mukherjee A., Lal R. 2013. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy, 3(2), 313–339. https://doi.org/10.3390/agronomy3020313.
  • 33. Mukherjee S., Mavi M.S., Sing J., Sing B.P. 2019. Rice-residue biochar influences phosphorus availability in soil with contrasting P status. Archives of Agronomy and Soil Science, 778–791. https://doi.org/10.1080/03650340.2019.1639153.
  • 34. Nelissen V., Rütting T., Huygens D., Staelens J., Ruysschaert G., Boeckx P. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 55, 20–27. https://doi.org/10.1016/j.soilbio.2012.05.019.
  • 35. Oladele S.O. 2019. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice – maize cropping sequence. Geoderma, 353(June), 359–371. https://doi.org/10.1016/j.geoderma.2019.06.038.
  • 36. Olsen S.R., Dean L.A. 1965. Phosphorus. In: A.G. Norman (Ed.), Methods of soil analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy, pp. 1035–1049.
  • 37. Pal S., Marschner P. 2016. Soil respiration, microbial biomass C and N availability in a sandy soil amended with clay and residue mixtures. Pedosphere, 26(5), 643–651. https://doi.org/10.1016/S1002–0160(15)60073-X.
  • 38. Pandey V., Patel A., Patra D.D. 2016. Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecological Engineering, 90, 361–366. https://doi.org/10.1016/j.ecoleng.2016.01.020.
  • 39. Parvage M.M., Ulén B., Eriksson J., Strock J., Kirchmann H. 2013. Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49(2), 245–250. https://doi.org/10.1007/s00374–012–0746–6.
  • 40. Rens H., Bera T., Alva A. 2018. Effects of biochar and biosolid on adsorption of nitrogen, phosphorus, and potassium in two soils. Water, Air, & Soil Pollution.
  • 41. Reuter G. 1994. Improvement of sandy soils by clay-substrate application. Applied Clay Science, 9(2), 107–120. https://doi.org/10.1016/0169–1317(94)90030–2.
  • 42. Schulz H., Dunst G., Glaser B. 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827. https://doi.org/10.1007/s13593–013–0150–0.
  • 43. Shaaban M., Van Zwieten L., Bashir S., Younas A., Núñez-Delgado A., Chhajro M.A., Kubar K.A., Ali U., Rana M.S., Mehmood M.A., Hu R. 2018. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228(April), 429–440. https://doi.org/10.1016/j.jenvman.2018.09.006.
  • 44. Slavich P.G., Sinclair K., Morris S.G., Kimber S.W.L., Downie A., Zwieten L.V. 2013. Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 366, 213–227.
  • 45. Wang Y., Liu Y., Liu R., Zhang A., Yang S., Liu H., Zhou Y., Yang Z. 2017. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598–017–01173-w.
  • 46. Yao Y., Zhang M., Inyang M., Zimmerman AR. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002.
  • 47. Yuan J., Xu R. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115. https://doi.org/10.1111/j.1475–2743.2010.00317.x.
  • 48. Yunilasari M., Sufardi., Zaitun. 2020. Effects of biochar and cow manure on soil chemical properties and peanut (Arachis hypogaea L.) yields in entisol. IOP Conference Series: Earth and Environmental Science, 425, 012014. https://doi.org/10.1088/1755–1315/425/1/012014.
  • 49. Zeid H.A., Wafaa H.M., I.I. Abou El Seoud., Alhadad, W.A.A. 2015. Effect of organic materials and inorganic fertilizers on the growth, mineral composition and soil fertility of radish plants (Raphine’s sativus) grown in sandy soil. Middle East Journal of Agriculture Research, 4(01), 77–87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d90032df-c0f9-4929-8aca-333a7d953321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.