PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The academic interest for bioplastics – a bibliometric analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Naukowe zainteresowanie biotworzywami – analiza bibliometryczna
Języki publikacji
EN
Abstrakty
EN
Plastic materials are shaping modern society and making our lives easier. However, due to improper handling of plastic waste, plastics are no longer ubiquitous only in our homes, villages and cities but also in the natural environment. In line with the concept of bioeconomy, bioplastics are presented as a sustainable option that could help the economy overcome its dependence on fossil fuels and contribute to the reduction of overall plastic pollution. The study aims to identify the areas of academic interest in bioplastics. The study's methodological approach is based on a bibliometric (scientometric) analysis. It was found that in academia, biology, chemistry, and biotechnology are the main areas dealing with bioplastics, focusing on the whole process of product development. At the same time, there is a significant lack of research in areas such as social sciences, including econom-ics. These findings should contribute to the global scientific discourse.
PL
Tworzywa sztuczne kształtują współczesne społeczeństwo i ułatwiają codzienne życie. Jednak w związku z niewłaściwym postępowaniem, odpady z tworzyw sztucznych są wszechobecne nie tylko w naszych domach, wsiach i miastach, ale także w środowisku naturalnym. Zgodnie z koncepcją biogospodarki biotworzywa są przedstawiane jako zrównoważona opcja, która może pomóc gospodarce przezwyciężyć zależność od paliw kopalnych i przyczynić się do zmniejszenia ogólnego zanieczyszczenia tworzywami sztucznymi. Badanie ma na celu zidentyfikowanie obszarów zainteresowań naukowych biotworzywami. Podejście metodologiczne badania opiera się na analizie bibliometrycznej (scientometrii). Stwierdzono, że w środowisku akademickim biologia, chemia i biotechnologia to główne obszary zajmujące się biotworzywami, skupiające się na całym procesie rozwoju produktu. Jednocześnie istnieje znaczny brak badań w takich dziedzinach, jak nauki społeczne, w tym ekonomia. Niniejsze rozważania powinny przyczynić się do globalnego dyskursu naukowego.
Rocznik
Tom
Strony
65--82
Opis fizyczny
Bibliogr. 69 poz., rys., wykr.
Twórcy
  • Faculty of Economics, University of South Bohemia in České Budějovice, Studentská 13, 370 05, České Budějovice, Czech Republic
  • Faculty of Economics, University of South Bohemia in České Budějovice, Studentská 13, 370 05, České Budějovice, Czech Republic
Bibliografia
  • Al-Battashi, H., Annamalai, N., Al-Kindi, S., Nair, A. S., Al-Bahry, S., Verma, J. P., & Sivakumar, N. (2019). Bioplastic production (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari, Journal of Cleaner Production, 214, 236-247. https://doi.org/10.1016/j.jclepro.2018.12.239
  • Arıkan, E. B., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability, International Advanced Researches and Engineering Journal, 3(2), 93-97. https://doi.org/10.35860/iarej.420633
  • Ashok, A., Abhijith, R., & Rejeesh, C. R. (2018). Material characterisation of starch derived biodegradable plastics and its mechanical property estimation, Materials Today: Proceedings, 5(1), 2163-2170. https://doi.org/10.1016/j.matpr.2017.09.214
  • Athey, S. N., Albotra, S. D., Gordon, C. A., Monteleone, B., Seaton, P., Andrady, A. L., Taylor, A. R., & Brander, S. M. (2020). Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant, Limnology and Oceanography, 5(1), 154-162. https://doi.org/10.1002/lol2.10130
  • Avio, C. G., Gorbi, S., & Regoli, F. (2017). Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 128, 2-11. https://doi.org/10.1016/j.marenvres.2016.05.012
  • Biancolillo, I., Paletto, A., Jacques, B., Keller, M., & Romagnoli, M. (2020). A literature review on forest bioeconomy with a bibliometric network analysis, Journal of Forest Science, 66(7), 265-279. https://doi.org/10.17221/75/2020-JFS
  • Boni, W., Parrish, K., Patil, S., & Fahrenfeld, N. L. (2021). Total coliform and Escherichia coli in microplastic biofilms grown in wastewater and inactivation by peracetic acid, Water Environment Research, 93(3), 334-342. https://doi.org/10.1002/wer.1434
  • Brooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade, Science Advances, 4(6), https://doi.org/10.1126/sciadv.aat0131
  • Carmona-Serrano, N., López-Belmonte, J., Cuesta-Gómez, J.-L., & Moreno-Guerrero, A.-J. (2020). Documentary Analysis of the Scientigic Literature on Autism and Technology in Web of Science, Brain Sciences, 10(12), 985. https://doi.org/10.3390/brainsci10120985
  • Cinar, S. P., Chong, Z. K., Kucuker, M. A., Wieczorek, N., Cengiz, U., & Kuchta, K. (2020). Bioplastic Production from Microalgae: A Review, International Journal of Environmental Research and Public Health, 17, 3842. https://doi.org/10.3390/ijerph17113842
  • Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment, Earth Systems and Environment, 5, 231-251. https://doi.org/10.1007/s41748-021-00208-7
  • Egun, N. K., & Evbayiro, O. J. (2020). Beat the plastic: an approach to polyethylene terephthalate (PET) bottle waste management in Nigeria, Waste Disposal & Sustainable Energy, 2, 313-320. https://doi.org/10.1007/s42768-020-00052-x
  • Grubert, E., & Zacarias, M. (2022). Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs, Renewable and Sustainable Energy Reviews, 159, 112208. https://doi.org/10.1016/j.rser.2022.112208
  • Heller, M. C., Mazor, M. H., & Keoleian, G. A. (2020). Plastics in the US: toward a material flow characterization of production, markets and end of life, Environmental Research Letters, 15(9), 094034. https://doi.org/10.1088/1748-9326/ab9e1e
  • Herberz, T., Barlow, C. Y., & Finkbeiner, M. (2020). Sustainability Assessment of a Single-Use Plastics Ban, Sustainability, 12(9), 3746. https://doi.org/10.3390/su12093746
  • Hou, P., Xu, Y., Taiebat, M., Lastoskie, C., Miller, S. A., & Xu, M. (2018). Life cycle assessment of end-of-life treatments for plastic film waste, Journal of Cleaner Production, 201, 1052-1060. https://doi.org/10.1016/j.jclepro.2018.07.278
  • Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends, European Polymer Journal, 49, 1215-1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019
  • Ivleva, N. P., Wiesheu, A. C., & Niessner, R. (2016). Microplastic in aquatic ecosystems, Angewandte Chemie International Edition, 56(7), 1720-1739. https://doi.org/10.1002/anie.201606957
  • Jaconis, S. B., Morita, A. T., Coutinho, P. L. A., & Borschiver, S. (2019). Systematically Monitoring, Relational Database and Technology Roadmapping for Trends and Innovation Opportunities in Biopolymers, Journal of Renewable Materials, 7(11), 1221-1230. https://doi.org/10.32604/jrm.2019.00025
  • Jander, W. (2022). Advancing bioeconomy monitorings: A case for considering bioplastics. Sustainable Productii and Consumption, 30, 255-268. https://doi.org/10.1016/j.spc.2021.11.033
  • Jeong, D.-H., & Koo, Y. (2016). Analysis of Trend and Convergence for Science and Technology using the VOSviewer, International Journal of Contents, 12(3), 54-58. https://doi.org/10.5392/IJoC.2016.12.3.054
  • Jiménez-Castro, M. P., Buller, L. S., Sganzerla, W. G. & Forster-Carneiro, T. (2020). Bioenergy production from orange industrial waste: a case study, Biofuels, Bioproducts & Biorefining, 14(6), 1239-1253. https://doi.org/10.1002/bbb.2128
  • Jiménez-Rosado, M., Bouroudian, E., Perez-Puyana, V., Guerrero, A., & Romero, A. (2020). Evaluation of different strengthening methods in the mechanical and functional properties of soy protein-based bioplastics, Journal of Cleaner Production, 262, 121517. https://doi.org/10.1016/j.jclepro.2020.121517
  • Jõgi , K., Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production, Sustainable Chemistry and Pharmacy, 18: 100326. https://doi.org/10.1016/j.scp.2020.100326
  • Klein, F., Emberger-Klein, A., Menrad, K., Möhring, W., & Blesin, J.-M. (2019). Influencing factors for the purchase intention of consumers choosing bioplastic products in Germany, Sustainable Production and Consumption, 19, 33-43. https://doi.org/10.1016/j.spc.2019.01.004
  • Konstantinis, A., Rozakis, S., Maria, E.-A., & Shu, K. (2018). A Definition of Bioeconomy through the Bibliometric Networks of the Scientific Literature, AgBioForum, 21(2), 64-85.
  • Krishnamurthy, A., Amritkumar, P. (2019). Synthesis and characterization of ecofriendly bioplastic from low-cost plant resources, SN Applied Sciences, 1, 1432. https://doi.org/10.1007/s42452-019-1460-x
  • Lahtela, V., Hyvärinen, M., & Kärki, T. (2019). Composition of Plastic Fractions in Waste Streams: Toward More Efficient Recycling and Utilization, Polymers, 11(1), 69. https://doi.org/10.3390/polym11010069
  • Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal, Palgrave Communications, 5, 6. https://doi.org/10.1057/s41599-018-0212-7
  • Liang, Y., Tan, Q., Song, Q., & Li, J. (2021). An analysis of the plastic waste trade and management in Asia, Waste Management, 119, 242-253. https://doi.org/10.1016/j.wasman.2020.09.049
  • Liu S., Fang, S., Xiang, Z., Chen, X., Song, Y., Chen, C., Ouyang, G. (2021). Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli, Journal of Hazardous Materials, 407, 124849. https://doi.org/10.1016/j.jhazmat.2020.124849
  • Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A., & Bosker, T. (2017). A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment, Marine Pollution Bulletin, 123(1-2), 219-226. https://doi.org/10.1016/j.marpolbul.2017.08.057
  • López-Belmonte, J., Parra-González, M. E., Segura-Robles, A., & Pozo-Sánchez, S. (2020). Scientific Mapping of Gamification in Web of Science, European Journal of Investigation in Health, Psychology and Education, 10(3), 832-847. https://doi.org/10.3390/ejihpe10030060
  • Marín-Marín, J.-A., Moreno-Guerrero, A.-J., Dúo-Terrón, P., & López-Belmonte, J. (2021).
  • STEAM in education: a bibliometric analysis of performance and co-words in Web of Science, International Journal of STEM Education, 8, 41. https://doi.org/10.1186/s40594-021-00296-x
  • Mercogliano R., Avio, C. G., Regoli, F., Anastasio, A., Colavita, G., & Santonicola, S. (2020). Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review, Journal of Agricultural and Food Chemistry, 68(19), 5296-5301. https://doi.org/10.1021/acs.jafc.0c01209
  • Moscato, I., Munoz, D. C., & González, S. D. (2020). How to deal with organic municipal solid waste over-sieve fraction, Environmental Engineering and Management Journal, 19(10), 1807-1811.
  • Muizniece I., Zihare, I., & Blumberga, D. (2019). Obtaining the Factors Affecting Bioeconomy, Environmental and Climate Technologies, 23(1), 277-191. https://doi.org/10.2478/rtuect-2019-0018
  • Nkwachukwu, O. I., Chima, C. H., Ikenna, A. O., & Albert, L. (2013). Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries, International Journal of Industrial Chemistry, 4, 34. https://doi.org/10.1186/2228-5547-4-34
  • Paltaki, A., Michailidis, A., Chatzitheodoridis, F., Zaralis, K., & Loizou, E. (2021). Bioeconomy and Livestock Production Nexus: A Bibliometric Network Analysis, Sustainability, 13(22), 12350. https://doi.org/10.3390/su132212350
  • Pfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. M. (2014). Visions of Sustainability in Bioeconomy Research, 6, 1222-1249. https://doi.org/0.3390/su6031222
  • Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID19 Pandemic Repercussions on the Use and Management of Plastics, Environmental Science & Technology, 54(13), 7760-7765. https://doi.org/10.1021/acs.est.0c02178
  • Qu, S., Guo, Y., Ma, Z., Chen, W.-Q., Liu, J., Liu, G., Wang, Y., & Xu, M. (2019). Implications of China’s foreign waste ban on the global circular economy, Resources, Conservation and Recycling, 144, 252-255. https://doi.org/10.1016/j.resconrec.2019.01.004
  • Rahman, M. D., Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics, Journal of Cleaner Production, 294, 126218. https://doi.org/10.1016/j.jclepro.2021.126218
  • Rhodes, C. J. (2018). Plastic Pollution and Potential Solutions, Science Progress, 101(3), 207-260. https://doi.org/10.3184/003685018X15294876706211
  • Roman, L., Schuyler, Q., Wilcox, C., & Hardesty, B. D. (2021). Plastic pollution is killing marine megafauna, but how do we prioritize policies to reduce mortality? Conservation Letters, 14(2), e12781. https://doi.org/10.1111/conl.12781
  • Roosen, M., Mys, N., Kusenberg, M., Billen, P., Dumoulin, A., Dewulf, J., Van Geem, K. M., Ragaert, K., & De Meester, S. (2020). Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling, Environmental Science & Technology, 54(20), 13282-13293. https://doi.org/10.1021/acs.est.0c03371
  • Rx3, 2011. The Irish Recycled Plastic Waste Arisings Study. Dublin: Rx3.
  • Saharan, B. S., Ankita, & Sharma, D. (2012). Bioplastics – for sustainable development: a review, International Journal of Microbial Resource Technology, 1(1), 11-23.
  • Saikawa , E., Wu, Q., Zhong, M., Avramov, A., Ram, K., Stone, E. A., Stockwell, C. E., Jayarathne, T., Panday, A. K., & Yokelson, R. J. (2020). Garbage Burning in South Asia: How Important Is It to Regional Air Quality?, Environmental Science and Technology, 54(16), 9928-9938. https://doi.org/10.1021/acs.est.0c02830
  • Selvamurugan, M., Sivakumar, P. (2019). Bioplastics – An Eco-Friendly Alternative to Petrochemical Plastics, Current World Environment, 14(1), 49-59. https://doi.org/10.12944/CWE.14.1.07
  • Serrano-Ruíz, H., Martín-Closas, L., & Pelacho, A. M. (2018). Application of an in vitro plant ecotoxicity test to unused biodegradable mulches, Polymer Degradation and Stability, 158, 102-110. https://doi.org/10.1016/j.polymdegradstab.2018.10.016
  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review, Biotechnology Advances, 26, 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005
  • Shah, S. H. H., Lei, S. (2020). Prosumption: bibliometric analysis using HistCite and VOSviewer, Kybernetes, 49(3), 1020-1045. https://doi.org/10.1108/K-12-2018- 0696
  • Shamsuddin, I. M., Jafar, J. A., Shawai, A. S. A., Yusuf, S., Lateefah, M., & Aminu, I. (2017). Bioplastics as Better Alternative to Petroplastics and Their Role in National Sus- tainability: A Review. Advances in Bioscience and Bioengineering, 5(4), 63-70. https://doi.org/10.11648/j.abb.20170504.1
  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste, Energy Conversion and Management, 148, 925-934. https://doi.org/10.1016/j.enconman.2017.06.046
  • Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., & Tang, W. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, 114469. https://doi.org/10.1016/j.envpol.2020.114469
  • Shruti, V. C., Kutralam-Muniasamy, G. (2019). Bioplastics: Missing link in the era of Microplastics, Science of The Total Environment, 697, 134139. https://doi.org/10.1016/j.scitotenv.2019.134139
  • Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics, Philosophical Transactions of the Royal Society B, 364(1526), 2127-2139. https://doi.org/10.1098/rstb.2008.0289
  • Špajcar, M., Horvat, P., & Kržan, A. (2012). Biopolymers and Bioplastics: Plastics aligned with nature. Ljubljana: National Institute of Chemistry.
  • Thiel, M., Luna-Jorquera, G., Álvarez-Varas, R., Gallardo, C., Hinojosa, I. A., Luna, N., Miranda-Urbina, D., Morales, N., Ory, N., Pacheco, A. S., Porflitt-Toro, M., & Zavalaga, C. (2018). Impacts of Marine Plastic Pollution From Continental Coasts to Subtropical Gyres – Fish, Seabirds, and Other Vertebrates in the SE Pacific, Frontiers in Marine Science, 5, 238. https://doi.org/10.3389/fmars.2018.00238
  • Turpie , J., Letley, G., Ng’oma, Y., & Moore, K. (2019). The case for banning single-use plastics in Malawi: Report prepared for UNDP on behalf of the Government of Malawi by Anchor Environmental Consultants in collaboration with Lilongwe Wildlife Trust. Report No. AEC/1836/1. Anchor Environmental Consultants.
  • Ubando, A. T., Felix, Ch., B., Chen, & W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review, Bioresource Technology, 299, 122585. https://doi.org/10.1016/j.biortech.2019.122585
  • Usmani, Z., Sharma, M., Awasthi, A. K., Sivaumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J., & Gupta, V. K. (2021). Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact, Bioresource Technology, 322, 124548. https://doi.org/10.1016/j.biortech.2020.124548
  • Valderrama, M. A. M., Van Putten, R.-J., & Gruter, G.-J. M. (2019). The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU), European Polymer Journal, 119, 445-468. https://doi.org/10.1016/j.eurpolymj.2019.07.036
  • Van Eck, N. J., Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-009-0146-3
  • Van Eck, N. J., Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer, Scientometrics, 111, 1053-1070. https://doi.org/10.1007/s11192-017-2300-7
  • Vanapalli, K. R., Sharma, H. B., Ranjan, V. P., Samal, B., Bhattacharya, J., Dubey, B. K., & Goel. S. (2021). Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic, Science of The Total Environment, 750, 141514. https://doi.org/10.1016/j.scitotenv.2020.141514
  • Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic Pollutants from Plastic Waste – A Review, Procedia Environmental Science, 35, 701-708. https://doi.org/10.1016/j.proenv.2016.07.069
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8f5cea3-8fe2-41f0-ae59-48c23b183760
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.