Tytuł artykułu
Autorzy
Douglas Timothy E.L
Lopez-Heredia Marco A.
Pułczyńska Aleksandra
Łapa Agata
Pietryga Krzysztof
Schaubroeck David
Santos Sónia A.O.
Pais Adriana
Brackman Gilles
Schamphelaere Karel de
Samal Sangram Keshari
Keppler Julia K.
Bauer Jonas L
Chai Feng
Blanchemain Nicolas
Coenye Tom
Pamuła Elżbieta
Skirtach Andre G
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hydrogel mineralization with calcium phosphate (CaP) and antibacterial activity are desirable for applications in bone regeneration. Mineralization with CaP can be induced using the enzyme alkaline phosphatase (ALP), responsible for CaP formation in bone tissue. Incorporation of polyphenols, plant-derived bactericidal molecules, was hypothesized to provide antibacterial activity and enhance ALP-induced mineralization. Three phenolic rich plant extracts from: (i) green tea, rich in epigallocatechin gallate (EGCG) (herafter referred to as EGCG-rich extract); (ii) pine bark and (iii) rosemary were added to gellan gum (GG) hydrogels and subsequently mineralized using ALP. The phenolic composition of the three extracts used were analyzed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MSn). EGCG-rich extract showed the highest content of phenolic compounds and promoted the highest CaP formation as corroborated by dry mass percentage meassurements and ICP-OES de-termination of mass of elemental Ca and P. All three extracts alone exhibited antibacterial activity in the following order EGCG-rich > PI > RO, respectively. However, extract-loaded and mineralized GG hydro-gels did not exhibit appreciable antibacterial activity by diffusion test. In conclusion, only the EGCG-rich extract promotes ALP-mediated mineralization.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
2--9
Opis fizyczny
Bibliogr. 42 poz., rys., tab., zdj.
Twórcy
autor
- Dept. Molecular Biotechology, Ghent University, Belgium
- Engineering Department, Lancaster University, United Kingdom
- Material Science Institute (MSI), Lancaster University, United Kingdom
autor
- U1008: Controlled Drug Delivery Systems and Biomaterials, Univ. Lille II, France
autor
- Dept. Biomaterials and Composites, AGH University of Science and Technology, Kraków, Poland
autor
- Dept. Biomaterials and Composites, AGH University of Science and Technology, Kraków, Poland
autor
- Dept. Biomaterials and Composites, AGH University of Science and Technology, Kraków, Poland
autor
- Centre for Microsystems Technology (CMST), imec and Ghent University, Belgium
autor
- CICECO-Aveiro Institute of Materials, Dept. Chemistry, University of Aveiro, Portugal
autor
- CICECO-Aveiro Institute of Materials, Dept. Chemistry, University of Aveiro, Portugal
autor
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
autor
- Laboratory for Environmental and Acquatic Ecology, Ghent University, Belgium
autor
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Belgium
autor
- Dept. Food Technology, Christian-Albrechts-Universität zu Kiel, Germany
autor
- Dept. Food Technology, Christian-Albrechts-Universität zu Kiel, Germany
autor
- U1008: Controlled Drug Delivery Systems and Biomaterials, Univ. Lille II, France
autor
- U1008: Controlled Drug Delivery Systems and Biomaterials, Univ. Lille II, France
autor
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
autor
- Dept. Biomaterials and Composites, AGH University of Science and Technology, Kraków, Poland
autor
- Dept. Molecular Biotechology, Ghent University, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Belgium
Bibliografia
- [1] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6(2) (2015) 105-21.
- [2] S. Donatan, A. Yashchenok, N. Khan, B. Parakhonskiy, M. Cocquyt, B.E. Pinchasik, D. Khalenkow, et al.: Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. Acs Applied Materials & Interfaces 8(22) (2016) 14284-14292.
- [3] M. Maitra, V.K. Shukla: Cross-linking in Hydrogels - A Review. Am J Polym Sci 4(2) (2014) 25.
- [4] D.F. Coutinho, S.V. Sant, H. Shin, J.T. Oliveira, M.E. Gomes, N.M. Neves, A. Khademhosseini, R.L. Reis: Modified Gellan Gum hydrogels with tunable physical and mechanical properties, Biomaterials 31(29) (2010) 7494-502.
- [5] C.J. Ferris, K.J. Gilmore, G.G. Wallace, M.i.h. Panhuis: Modified gellan gum hydrogels for tissue engineering applications, Soft Matter 9(14) (2013) 3705-3711.
- [6] T.E. Douglas, A. Dokupil, K. Reczynska, G. Brackman, M. Krok-Borkowicz, J.K. Keppler, M. Bozic, P. Van Der Voort, K. Pietryga, S.K. Samal, L. Balcaen, J. van den Bulcke, J. Van Acker, et al.: Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol((R)) to endow antibacterial properties and promote mineralization, Biomed Mater 11(4) (2016) 045015.
- [7] J.R. Mediavilla, L. Chen, B. Mathema, B.N. Kreiswirth: Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA), Curr Opin Microbiol 15(5) (2012) 588-95.
- [8] A.C. Uhlemann, M. Otto, F.D. Lowy, F.R. DeLeo: Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus, Infect Genet Evol 21 (2014) 563-74.
- [9] T.P.T. Cushnie, A.J. Lamb: Antimicrobial activity of flavonoids, International Journal of Antimicrobial Agents 26(5) (2005) 343-356.
- [10] A.N. Panche, A.D. Diwan, S.R. Chandra: Flavonoids: an over-view, J Nutr Sci 5 (2016) e47.
- [11] S. Swioklo, K.A. Watson, E.M. Williamson, J.A. Farrimond, S.E. Putnam, K.A. Bicknell: Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids, J Nat Prod 78(11) (2015) 2598-2608.
- [12] Y. Yoda, Z.Q. Hu, W.H. Zhao, T. Shimamura: Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate, J Infect Chemother 10(1) (2004) 55-8.
- [13] E. Hames-Kocabas, O. Yesil-Celiktas, M. Isleten, F. Vardar-Sukan: Antimicrobial activity of pine bark extract and asssessment of potential application in cooked red meat, GIDA 33(3) (2008) 123-127.
- [14] S. Moreno, T. Scheyer, C.S. Romano, A.A. Vojnov: Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphe-nol composition, Free Radical Research 40(2) (2006) 223-231.
- [15] R. Touati, S.A.O. Santos, S.M. Rocha, K. Belhamel, A.J.D. Silvestre: Phenolic composition and biological prospecting of grains and stems of Retama sphaerocarpa, Industrial Crops and Products 95 (2017) 244-255.
- [16] T.E. Douglas, A. Lapa, K. Reczynska, M. Krok-Borkowicz, K. Pietryga, S.K. Samal, H.A. Declercq, D. Schaubroeck, M. Boone, P. Van der Voort, K. De Schamphelaere, C.V. Stevens, V. Bliznuk, L. Balcaen, B.V. Parakhonskiy, F. Vanhaecke, V. Cnudde, E. Pamula, A.G. Skirtach: Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles, Biomed Mater 11(6) (2016) 065011.
- [17] A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck: Antibiotic susceptibility testing by a standardized single disk method, Tech Bull Regist Med Technol 36(3) (1966) 49-52.
- [18] D. Del Rio, A.J. Stewart, W. Mullen, J. Burns, M.E. Lean, F. Brighenti, A. Crozier: HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea, Journal of agricultural and food chemistry 52(10) (2004) 2807-2815.
- [19] R. Touati, S.A. Santos, S.M. Rocha, K. Belhamel, A.J. Silvestre: Phe-nolic composition and biological prospecting of grains and stems of Re-tama sphaerocarpa, Industrial crops and products 95 (2017) 244-255.
- [20] M. de la Luz Cádiz-Gurrea, S. Fernández-Arroyo, A. Segura-Carretero: Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC–ESI-QTOF-MS, International journal of molecular sciences 15(11) (2014) 20382-20402.
- [21] M. Achour, R. Mateos, M. Ben Fredj, A. Mtiraoui, L. Bravo, S. Saguem: A comprehensive characterisation of rosemary tea obtained from Rosmarinus officinalis L. collected in a sub‐humid area of Tunisia, Phytochemical analysis 29(1) (2018) 87-100.
- [22] P. Mena, M. Cirlini, M. Tassotti, K.A. Herrlinger, C. Dall’Asta, D. Del Rio: Phytochemical Profiling of Flavonoids, Phenolic Acids, Ter-penoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract, Molecules 21(11) (2016).
- [23] D. Del Rio, A.J. Stewart, W. Mullen, J. Burns, M.E. Lean, F. Brighenti, A. Crozier: HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea, J Agric Food Chem 52(10) (2004) 2807-15.
- [24] H.A. Weber, A.E. Hodges, J.R. Guthrie, B.M. O’Brien, D. Robaugh, A.P. Clark, R.K. Harris, J.W. Algaier, C.S. Smith: Comparison of proanthocyanidins in commercial antioxidants: grape seed and pine bark extracts, J Agric Food Chem 55(1) (2007) 148-56.
- [25] S. Iravani, B. Zolfaghari: Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract, Res Pharm Sci 6(1) (2011) 1-11.
- [26] E.N. Frankel, S.W. Huang, R. Aeschbach, E. Prior: Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion, Journal of Agricultural and Food Chemistry 44(1) (1996) 131-135.
- [27] J.K. Keppler, D. Martin, V.M. Garamus, K. Schwarz: Differences in binding behavior of (-)-epigallocatechin gallate to -lactoglobulin heterodimers (AB) compared to homodimers (A) and (B), Journal of Molecular Recognition 28(11) (2015) 656-666.
- [28] S. Wiese, S. Gartner, H.M. Rawel, P. Winterhalter, S.E. Kulling: Protein interactions with cyanidin-3-glucoside and its influence on alpha-amylase activity, Journal of the Science of Food and Agriculture 89(1) (2009) 33-40.
- [29] H.E. Khoo, A. Azlan, S.T. Tang, S.M. Lim: Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits, Food & Nutrition Research 61 (2017) 1-21.
- [30] V. Bongartz, L. Brandt, M.L. Gehrmann, B.F. Zimmermann, N. Schulze-Kaysers, A. Schieber: Evidence for the Formation of Benzacridine Derivatives in Alkaline-Treated Sunflower Meal and Model Solutions, Molecules 21(1) (2016).
- [31] F. Fuchs, Z. Grabarek: The green tea polyphenol (-)-epigal-locatechin-3-gallate inhibits magnesium binding to the C-domain of cardiac troponin C, Journal of Muscle Research and Cell Motility 34(2) (2013) 107-113.
- [32] T.E. Douglas, G. Krawczyk, E. Pamula, H.A. Declercq, D. Schaubroeck, M.M. Bucko, L. Balcaen, P. Van Der Voort, V. Bliznuk, N.M. van den Vreken, M. Dash, et al.: Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means, J Tissue Eng Regen Med 10(11) (2016) 938-954.
- [33] T.E.L. Douglas, M. Pilarz, M. Lopez-Heredia, G. Brackman, D. Schaubroeck, L. Balcaen, V. Bliznuk, P. Dubruel, C. Knabe-Ducheyne, F. Vanhaecke, T. Coenye, E. Pamula: Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity, J Tissue Eng Regen Med 11(5) (2017) 1610-1618.
- [34] T.E. Douglas, P.B. Messersmith, S. Chasan, A.G. Mikos, E.L. de Mulder, G. Dickson, D. Schaubroeck, L. Balcaen, F. Vanhaecke, P. Dubruel, J.A. Jansen, S.C. Leeuwenburgh: Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase, Macromol Biosci 12(8) (2012) 1077-89.
- [35] W.M. Chirdon, W.J. O’Brien, R.E. Robertson: Adsorption of ca-techol and comparative solutes on hydroxyapatite, J Biomed Mater Res B Appl Biomater 66(2) (2003) 532-8.
- [36] J. Ryu, S.H. Ku, H. Lee, C.B. Park: Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization, Adv. Funct. Mater. 20 (2010) 2132–2139.
- [37] A.M. Jaafar, V .Thatchinamoorthi, Preparation and Characterisation of Gellan Gum Hydrogel containing Curcumin and Limonene, IOP Conf. Series: Materials Science and Engineering 440 (2018) 012023
- [38] T.O. Ajiboye, M. Aliyu, I. Isiaka, F.Z. Haliru, O.B. Ibitoye, J.N. Uwazie, H.F. Muritala, S.A. Bello, I.I. Yusuf, A.O. Mohammed: Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality, Chemico-Biological Interactions 258 (2016) 276-287.
- [39] J.C. Anderson, R.A. McCarthy, S. Paulin, P.W. Taylor: Anti-staphylococcal activity and beta-lactam resistance attenuating capacity of structural analogues of (-)-epicatechin gallate, Bioorg Med Chem Lett 21(23) (2011) 6996-7000.
- [40] B.S. Fazly Bazzaz, S. Sarabandi, B. Khameneh, H. Hosseinzadeh: Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa: - Combination therapy against resistant bacteria, J Pharmacopuncture 19(4) (2016) 312-318.
- [41] C.O. Rezende, L.A. Oliveira, B. Oliveira, C.G. Almeida, B.S. Ferreira, M. Le Hyaric, G.S.L. Carvalho, M.C.S. Lourenco, M. Batista, F.K. Marchini, et al: Synthesis and Antibacterial Activity of Alkylated Diamines and Amphiphilic Amides of Quinic Acid Derivatives, Chemical Biology & Drug Design 86(3) (2015) 344-350.
- [42] S.P. Ekambaram, S.S. Perumal, A. Balakrishnan, N. Marappan, S.S. Gajendran, V. Viswanathan: Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aure-us, Journal of Intercultural Ethnopharmacology 5(4) (2016) 358-36
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8f1690a-89ab-4ba0-bdf0-2b6bd180ff5b