PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilizing Merbau Wood and Coconut Shell Wastes as Biofuel in the Form of Pellets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wood waste generated by wood industries is increasing. On the other hand, the demand for bioenergy in the form of pellets is also rapidly increasing. Converting wood waste into wood pellets can be one of the alternatives of waste management. At the same time, improving pellets quality can be implemented to keep up with the increasing pellets demand. This study investigated the characteristics of merbau (Intsia bijuga) wood and coconut (Cocos nucifera) shell wastes pellets, and effects of material combination pellets characteristics. The results showed that merbau wood and coconut shell wastes pellets proved to meet the DIN EN 15270 pellet quality standard. Moreover, a significant improvement on merbau pellets proximate properties and calorific value was investigated; however, the crush strength of pellets was significantly decreased.
Słowa kluczowe
Rocznik
Strony
172--178
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada, JL. Agro no. 1, Bulaksumur, 55281, Yogyakarta, Indonesia
  • Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada, JL. Agro no. 1, Bulaksumur, 55281, Yogyakarta, Indonesia
Bibliografia
  • 1. Al-Qayim K., Nimmo W., Hughe K.J., Pourkashanian M. 2019. Effect of oxy-fuel combustion on ash deposition of pulverized wood pellets. Biofuel Research Journal, 6(1), 927–936. https://doi.org/10.18331/BRJ2019.6.1.4
  • 2. ASTM D 3172-89, 2002: Standard Practice for Proximate Analysis of Coal and Coke.
  • 3. ASTM D 5865-10a, 2010 : Standard Test Method for Gross Calorific Value of Coal and Coke.
  • 4. ASTM D 4179-01, 2011 : Standard Test Method for Single Pellet Crush Strength of Formed Catalysts Shapes.
  • 5. Chaney J. 2010. Combustion characteristics of biomass briquettes (Doctoral dissertation, University of Nottingham).
  • 6. Demirbas A. 2002. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy exploration & exploitation, 20(1), 105–111. https://doi.org/10.1260/014459802760170420
  • 7. Dick E.P., Ryabov G.A., Tugov A.N., Soboleva A.N. 2007. Comparing properties of coal ash and alternative-fuel ash. Thermal engineering, 54(3), 231–235. https://doi.org/10.1134/S004060150703010X
  • 8. DIN EN 15270, 2007: Pellet Burners for Small Heating Boilers. Definitions, Requirements, Testing, Marking.
  • 9. Ewansiha C.J., Ebhoaye J.E., Asia I.O., Ekebafe L.O., Ehigie C. 2012. Proximate and mineral composition of coconut (Cocos nucifera) shell. International Journal of Pure and Applied Sciences and Technology, 13(1), 57.
  • 10. Gusamo B.K., Towalis K.A. 2022. A Comparative Evaluation of Combustion Characteristics of Araucaria cunninghamii, Intsia bijuga and Pometia pinnata for Bio-Energy Source. Forests, 13(4), 563. https://doi.org/10.3390/f13040563
  • 11. Hasna A.H., Sutapa J.P.G., Irawati D. 2019. Pengaruh Ukuran Serbuk dan Penambahan Tempurung Kelapa Terhadap Kualitas Pelet Kayu Sengon. Jurnal Ilmu Kehutanan, 13(2), 170–180. https://doi.org/10.22146/jik.52428 (in Indonesian)
  • 12. Holm J.K., Henriksen U.B., Hustad J.E., Sørensen L.H. 2006. Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy & Fuels, 20(6), 2686–2694. https://doi.org/10.1021/ef0503360
  • 13. ISO 17225‐2, 2014: Solid biofuels− Fuel specifications and classes, Part 2: Graded wood pellets.
  • 14. Kaliyan N., Morey R.V. 2009. Factors affecting strength and durability of densified biomass products. Biomass and bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005
  • 15. Khasri A., Ahmad M.A. 2018. Adsorption of basic and reactive dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon: batch and column study. Environmental Science and Pollution Research, 25(31), 31508–31519. https://doi.org/10.1007/s11356-018-3046-3
  • 16. Kocsis Z., Csanady E. 2016. Factors influencing the mechanical stability of wood pellets. Wood Research, 61(3), 487–494.
  • 17. Larsson S.H., Samuelsson R. 2017. Prediction of ISO 17831-1: 2015 mechanical biofuel pellet durability from single pellet characterization. Fuel processing technology, 163, 8–15. https://doi.org/10.1016/j.fuproc.2017.04.004
  • 18. Lim H.P., Kosnan H. 2015. Study of mechanical behaviour of polypropylene matrix composite reinforced with coconut shell: COCOPOLY.
  • 19. Liu Z., Mi B., Jiang Z., Fei B., Cai Z. 2016. Improved bulk density of bamboo pellets as biomass for energy production. Renewable energy, 86, 1–7. https://doi.org/10.1016/j.renene.2015.08.011
  • 20. Min C.H., Um B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology, 45(6), 703–719. https://doi.org/10.5658/WOOD.2017.45.6.703
  • 21. Monedero E., Portero H., Lapuerta M. 2015. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology, 132, 15–23. https://doi.org/10.1016/j.fuproc.2014.12.013
  • 22. Obernberger I., Biedermann F., Widmann W., Riedl R. 1997. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and bioenergy, 12(3), 211–224. https://doi.org/10.1016/S0961-9534(96)00051-7
  • 23. Obernberger I., Thek G. 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and bioenergy, 27(6), 653–669. https://doi.org/10.1016/j.biombioe.2003.07.006
  • 24. Pradhan P., Mahajani S.M., Arora A. 2018. Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181, 215–232. https://doi.org/10.1016/j.fuproc.2018.09.021
  • 25. Prasetyadi G.V., Sutapa J.P.G. 2022. Kualitas Pelet dari Kombinasi Limbah Penggergajian Kayu Merbau (Intsia bijuga) dan Limbah Tempurung Kelapa (Cocos nucifera) Sebagai Sumber Energi Terbarukan. unpublished. (in Indonesian)
  • 26. Sajith S., Arumugam V., Dhakal H.N. 2017. Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 58, 60–69. https://doi.org/10.1016/j.polymertesting.2016.12.015
  • 27. Serrano C., Monedero E., Lapuerta M., Portero H. 2011. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel processing technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031
  • 28. Sukarta I.N., Sastrawidana I.D.K., Ayuni N.P.S. 2018. Proximate analysis and calorific value of pellets in biosolid combined with wood waste biomass. Journal of Ecological Engineering, 19(3). https://doi.org/10.12911/22998993/86153
  • 29. Telmo C., Lousada J. 2011. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and bioenergy, 35(5), 1663–1667. https://doi.org/10.1016/j.biombioe.2010.12.038
  • 30. Tsai W.T., Lee M.K., Chang D.Y. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of analytical and applied pyrolysis, 76(1–2), 230–237. https://doi.org/10.1016/j.jaap.2005.11.007
  • 31. Thrän D., Peetz D., Schaubach K., Backéus S., Benedetti L., Bruce L. 2017. Global wood pellet industry and trade study 2017. IEA Bioenergy Task 40.
  • 32. Wiloso E.I., Setiawan A.A.R., Prasetia H., Wiloso A.R., Sudiana I.M., Lestari R.,... and Heijungs R. 2020. Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178. https://doi.org/10.18331/BRJ2020.7.3.2
  • 33. Wistara N.J., Rohmatullah M.A., Febrianto F., Pari G., Lee S.H., Kim N.H. (2017). Effect of bark content and densification temperature on the properties of oil palm trunk-based pellets. Journal of the Korean Wood Science and Technology, 45(6), 671–681. https://doi.org/10.5658/WOOD.2017.45.6.671
  • 34. Zamorano M., Popov V., Rodríguez M.L., García-Maraver A. 2011. A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy, 36(11), 3133–3140. https://doi.org/10.1016/j.renene.2011.03.020
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8ecb0e1-213b-4e38-93ea-e531f340d79a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.