Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to examine how the wording of a question about audio, visual and audiovisual stimuli can affect the assessment of the environment. The participants of the psychophysical experiments were asked to rate, on a numerical scale, audio and visual information both separately and together, combined into mixes. A set of questions was used for all the investigated audio, visual, and audio-visual stimuli. The participants were asked about the comfort or the discomfort caused by the perceived stimuli presented at three different sound levels. The results show that there are no statistically significant differences between the assessment of comfort and discomfort associated with visual samples. Actually, the comfort and discomfort ratings are equivalent to the extent that a discomfort rating can be represented as the opposite to the comfort rating, i.e. the discomfort rating is equal to the 10 minus comfort rating. In general, the results obtained for audio and audio-visual samples were the same, with only a few exceptions that were dependent on sound level. No statistically significant differences were found for the loudest stimuli, but there were some exceptions for the softener cases. Based on the results, we show that only for visual stimuli both scales are totally interchangeable. When presenting audio and audio-visual samples, only one scale should be applied – either discomfort or comfort, depending on the context and the character of the stimuli.
Wydawca
Czasopismo
Rocznik
Tom
Strony
279--288
Opis fizyczny
Bibliogr. 36 poz., fot., tab., wykr.
Twórcy
autor
- Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
autor
- Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
autor
- Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
autor
- Institute of Philosophy, Szczecin University, Szczecin, Poland
Bibliografia
- 1. Alampi Sottini V. et al. (2018), Urban landscape assessment: a perceptual approach combining virtual reality and crowdsourced photo geodata, Aestimum, (73): 147-171, doi: 10.13128/aestimum-24927.
- 2. Asakura T., Tsujimura S., Yonemura M., Hyojin L., Sakamoto S. (2019), Effect of immersive visual stimuli on the subjective evaluation of the loudness and annoyance of sound environments in urban cities, Applied Acoustics, 143: 141-150, doi: 10.1016/J.APACOUST.2018.08.024.
- 3. Aspuru I., García I., Herranz K., Santander A. (2016), CITI-SENSE: methods and tools for empowering citizens to observe acoustic comfort in outdoor public spaces, Noise Mapping, 3 (1): 37-48, doi: 10.1515/noise-2016-0003.
- 4. Atik M., Işıklı R. C., Ortaçeşme V., Yıldırım E. (2017), Exploring a combination of objective and subjective assessment in landscape classification: Side case from Turkey, Applied Geography, 83: 130-140, doi: 10.1016/J.APGEOG.2017.04.004.
- 5. Barutchu A. et al. (2019), Multisensory perception and attention in school-age children, Journal of Experimental Child Psychology, 180: 141-155, doi: 10.1016/j.jecp.2018.11.021.
- 6. Cutaia F. (2016), Strategic Environmental Assessment: Integrating Landscape and Urban Planning, UNIPA Springer Series, Springer International Publishing, Cham, doi: 10.1007/978-3-319-42132-2.
- 7. Fields J. M. et al. (2001), Standardized general-purpose noise reaction questions for community noise surveys: research and a recommendation, Journal of Sound and Vibration, 242 (4): 641-679, doi: 10.1006/jsvi.2000.3384.
- 8. Filipan K., De Coensel B., Aumond P., Can A., Lavandier C., Botteldooren D. (2019), Auditory sensory saliency as a better predictor of change than sound amplitude in pleasantness assessment of reproduced urban soundscapes, Building and Environment, 148: 730-741, doi: 10.1016/j.buildenv.2018.10.054.
- 9. Gu J., Liu B., Li X., Wang P., Wang B. (2019), Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis, Brain Imaging and Behavior, 14 (5): 1908-1920, doi: 10.1007/s11682-019-00135-2.
- 10. Guillaume G. et al. (2016), Noise mapping based on participative measurements, Noise Mapping, 3 (1): 140-156, doi: 10.1515/noise-2016-0011.
- 11. Haapakangas A., Hongisto V., Oliva D. (2020), Audio-visual interaction in perception of industrial plants – Effects of sound level and the degree of visual masking by vegetation, Applied Acoustics, 160: 107121, doi: 10.1016/j.apacoust.2019.107121.
- 12. Herranz-Pascual K., García I., Aspuru I., Díez I., Santander Á. (2016), Progress in the understanding of soundscape: objective variables and objectifiable criteria that predict acoustic comfort in urban places, Noise Mapping, 3 (1): 247-263, doi: 10.1515/noise-2016-0017.
- 13. Hoffimann E., Campelo D., Hooper P., Barros H., Ribeiro A. I. (2018), Development of a smartphone app to evaluate the quality of public open space for physical activity. An instrument for health researchers and urban planners, Landscape and Urban Planning, 177: 191-195, doi: 10.1016/J.LANDURBPLAN.2018.05.005.
- 14. Ioannidou C., Santurette S., Jeong C.-H. (2016), Effect of modulation depth, frequency, and intermittence on wind turbine noise annoyance, The Journal of the Acoustical Society of America, 139 (3), 1241-1251, doi: 10.1121/1.4944570.
- 15. Kang J. (2006), Urban Sound Environment, Taylor & Francis.
- 16. Kattner F., Samaan L., Schubert T. (2019), Cross-modal transfer after auditory task-switching training, Memory & Cognition, 47 (5): 1044-1061, doi: 10.3758/s13421-019-00911-x.
- 17. Klein A. (2015), Annoyance indicators for various urban road vehicle pass-by noises and urban road traffic noise combined with tramway noise, Ecole Nationale des Travaux Publics de l’Etat.
- 18. Ladle A., Galpern P., Doyle-Baker P. (2018), Measuring the use of green space with urban resource selection functions: An application using smartphone GPS locations, Landscape and Urban Planning, 179: 107-115, doi: 10.1016/J.LANDURBPLAN.2018.07.012.
- 19. Lee H. M., Lee H. P. (2020), Noise masking in high population country using sound of water fountain, Applied Acoustics, 162: 107206, doi: 10.1016/j.apacoust.2020.107206.
- 20. Lee H. M., Liu Y., Lee H. P. (2020), Assessment of acoustical environment condition at urban landscape, Applied Acoustics, 160: 107126, doi: 10.1016/j.apacoust.2019.107126.
- 21. Liu F., Kang J. (2018), Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dualchannel acoustic tests, Building and Environment, 129: 35-45, doi: 10.1016/j.buildenv.2017.11.040.
- 22. McGurk H., MacDonald J. (1976), Hearing lips and seeing voices, Nature, 264 (5588): 746-748, doi: 10.1038/264746a0.
- 23. Murphy E., King E. A. (2016), Smartphone-based noise mapping: Integrating sound level meter app data into the strategic noise mapping process, Science of The Total Environment, 562: 852-859, doi: 10.1016/j.scitotenv.2016.04.076.
- 24. Preis A., Kaczmarek T., Wojciechowska H., Żera J., Fields J. M. (2003), Polish version of standardized noise reaction questions for community noise surveys, International Journal of Occupational Medicine and Environmental Health, 16 (2): 155-159.
- 25. Preis A., Kociński J., Hafke-Dys H., Wrzosek M. (2015), Audio-visual interactions in environment assessment, Science of The Total Environment, 523: 191-200, doi: 10.1016/j.scitotenv.2015.03.128.
- 26. Raimbault M. (2006), Qualitative judgements of urban soundscapes: Questionning Questionnaires and semantic scales, Acta Acustica united with Acustica, 92 (6): 929-937.
- 27. Schäffer B., Pieren R., Wissen Hayek U., Biver N., Gręt-Regamey A. (2019), Influence of visibility of wind farms on noise annoyance – A laboratory experiment with audio-visual simulations, Landscape and Urban Planning, 186: 67-78, doi: 10.1016/j.landurbplan.2019.01.014.
- 28. Spence C., Zampini M. (2006), Auditory contributions to multisensory product perception, Acta Acustica united with Acustica, 92 (6): 1009-1025.
- 29. van Stokkom V. L., Blok A. E., van Kooten O., de Graaf C., Stieger M. (2018), The role of smell, taste, flavour and texture cues in the identification of vegetables, Appetite, 121: 69-76, doi: 10.1016/j.appet.2017.10.039.
- 30. Sung J. H. et al. (2017), Influence of transportation noise and noise sensitivity on annoyance: a cross-sectional study in South Korea, International Journal of Environmental Research and Public Health, 14 (3): 322, doi: 10.3390/ijerph14030322.
- 31. Szychowska M., Hafke-Dys H., Preis A., Kociński J., Kleka P. (2018), The influence of audiovisual interactions on the annoyance ratings for wind turbines, 129: 190-203, doi: 10.1016/j.apacoust.2017.08.003.
- 32. Vich G., Marquet O., Miralles-Guasch C. (2019), Green exposure of walking routes and residential areas using smartphone tracking data and GIS in a Mediterranean city, Urban Forestry & Urban Greening, 40: 275-285, doi: 10.1016/J.UFUG.2018.08.008.
- 33. Viollon S., Lavandier C., Drake C. (2002), Influence of visual setting on sound ratings in an urban environment, Applied Acoustics, 63 (5): 493-511, doi: 10.1016/S0003-682X(01)00053-6.
- 34. Wallace M. T., Roberson G. E., Hairston W. D., Stein B. E., Vaughan J. W., Schirillo J. A. (2004), Unifying multisensory signals across time and space, Experimental Brain Research, 158 (2): 252-258, doi: 10.1007/s00221-004-1899-9.
- 35. Zhang X., Ba M., Kang J., Meng Q. (2018), Effect of soundscape dimensions on acoustic comfort in urban open public spaces, Applied Acoustics, 133: 73-81, doi: 10.1016/j.apacoust.2017.11.024.
- 36. Zuo J., Xia H., Liu S., Qiao Y. (2016), Mapping urban environmental noise using smartphones, Sensors (Basel), 16 (10): 1692, doi: 10.3390/s16101692.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8eb8f81-0115-494f-9c3e-be3c7cc43513