Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Curonian Lagoon is a shallow freshwater lagoon of significant environmental value in the south-eastern part of the Baltic Sea. The objective of the study was to evaluate changes of ice indices (duration, thickness and breakup dates) of this lagoon and to assess their possible tendencies in the 21st century. A methodology was developed combining the assessment of past changes (1960-2017) of ice indices and their projections in the near (2021-2040) and far (2081-2100) future periods using a hydrometeorological database, statistical methods and regression analysis as well as regional climate models and RCP scenarios. Climate change has a considerable impact on ice conditions in the Curonian Lagoon. During the historical period of 1960-2017, the Curonian Lagoon was covered with ice for 72 days a year, ice thickness reached 23 cm, whereas ice breakup was observed in the middle of March on average. According to the different scenarios, in the near and far future periods, ice duration will last 35-45 and 3-34 days, respectively. Ice thickness is projected to be 13-15 cm in the near future, whereas, at the end of the century, it is expected to decline to 0-13 cm. In the past, the lagoon ice cover remained until the middle of the third decade of February. At the end of the 21st century, RCP8.5 scenario projects the most drastic shifts: the permanent ice cover might be absent, whereas short-term ice cover is expected to melt already in the beginning of January.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
164--172
Opis fizyczny
Bibliogr. 38 poz., mapa, rys., tab., wykr.
Twórcy
autor
- Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
autor
- Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
autor
- Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
Bibliografia
- [1] Baukšys, J., 1978. Ice regime. In: Rainys A. (Ed.), The Curonian Lagoon. Vol. II. Vilnius, 34-49, (in Lithuanian).
- [2] Beall, B. F. N., Twiss, M. R., Smith, D. E., Oyserman, B. O., Rozmarynowycz, M. J., Binding, C. E., Bourbonniere, R. A., Bullerjahn, G. S., Palmer, M. E., Reavie, E. D., Waters, M. K., Woityra, W. C., McKay, R. M. L., 2016. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate. Environ. Microbiol. 18 (6), 1669-2079, https://dx.doi.org/10.1111/1462-2920.12819.
- [3] Brown, L. C., Duguay, C. R, 2010. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geog. 34 (5), 671-704, http://dx.doi.org/10.1177/0309133310375653.
- [4] Chubarenko, B., Chechko, V., Kileso, A., Krek, E., 2019. Hydrological and sedimentation conditions in a non-tidal lagoon during ice coverage - The example of Vistula Lagoon in the Baltic Sea. Estuar. Coast. Shelf. Sci. 216, 38-53, http://dx.doi.org/10.1016/j.ecss.2017.12.018.
- [5] Dailidienė, I., Davulienė, L., Kelpšaitė, L., Razinkovas, A., 2012. Analysis of the Climate Change in Lithuanian Coastal Areas of the Baltic Sea. J. Coastal. Res. 28 (3), 557-569, http://dx.doi.org/10.2112/JCOASTRES-D-10-00077.1.
- [6] Douglas, D. C., 2010, Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas: U.S. Geological Survey Open-File Report 2010-1176, 32 pp., https://doi.org/10.3133/ofr20101176.
- [7] Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P., Ménard, P., 2006. Recent trends in Canadian lake ice cover. Hydrol. Process. 20, 781-801, http://dx.doi.org/10.1002/hyp.6131.
- [8] Gailiušis, B., Jablonskis, J., Kovalenkovienė, M., 2001. Lithuanian rivers: hydrography and runoff, Lithuanian Energy Inst., Kaunas, 792 pp., (in Lithuanian).
- [9] Gudmundsson, L., Bremnes, J. B., Haugen, J. E., Engen-Skaugen, T., 2012. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrol. Earth Syst. Sci. 16, 3383-3390, https://dx.doi.org/10.5194/hess-16-3383-2012.
- [10] Hewitt, B. A., Lopez, L. S., Gaibisels, K. M., Murdoch, A., Higgins, S. N., Magnuson, J. J., Paterson, A. M., Rusak, J. A., Yao, H., Sharma, S., 2018. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water Sci. 10 (1), Art. no. 70, 16 pp., https://dx.doi.org/10.3390/w10010070.
- [11] IPCC, 2007. Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri, R. K., Reisinger, A. (Eds.), Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104 pp.
- [12] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, New York, USA, 1535 pp., https://dx.doi.org/10.1017/CBO9781107415324.
- [13] Jaagus, J., 2006. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/1950-2003/2004 and their relationship to large-scale atmospheric circulation. Boreal Environ. Res. 11, 169-183.
- [14] Jevrejeva, S., 2001. Severity of winter seasons in the northern Baltic Sea between 1529 and 1990: reconstruction and analysis. Clim. Res. 17, 55-62, https://dx.doi.org/10.3354/cr017055.
- [15] Jevrejeva, S., Drabkin, V. V., Kostjukov, J., Lebedev, A. A., Leppäranta, M., Mironov, Ye. U., Schmelzer, N., Sztobryn, M., 2004. Baltic Sea ice seasons in the twentieth century. Clim. Res. 25, 217-227, https://dx.doi.org/10.3354/cr025217.
- [16] Jylhä, K., Fronzek, S., Tuomenvirta, H., Carter, T. R., Ruosteenoja, K., 2008. Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climatic Change 86, 441-462, https://dx.doi.org/10.1007/s10584-007-9310-z.
- [17] Kļaviņš, M., Avotniece, V., Rodinovs, Z., 2016. Dynamics and Impacting Factors of Ice Regimes in Latvia Inland and Coastal Waters. Proc. Latvian Acad. Sci. 70 (6), 400-408, https://dx.doi.org/10.1515/prolas-2016-0059.
- [18] Kleeberg, A., Freidank, A., Jöhnk, K., 2013. Effects of ice cover on sediment resuspension and phosphorus entrainment in shallow lakes: combining in situ experiments and wind-wave modeling. Limnol. Oceangr. 58, 1819-1833, https://dx.doi.org/10.4319/lo.2013.58.5.1819.
- [19] Kozuchowski, K., Girjatowicz, J., 1997. Variation of the Ice Cover on the Szczecin Lagoon versus Contemporary Climatic Fluctuations. Unpublished manuscript, https://www.researchgate.net/publication/295565026_variation_of_the_ice_cover_on_the_szczecin_lagoon_versus_contemporary_climatic_fluctuations.
- [20] Latifovic, R., Pouliot, D., 2007. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 106, 492-507, https://dx.doi.org/10.1016/j.rse.2006.09.015.
- [21] Lindenschmidt, K. E., Baulch, H. M., Cavaliere, E., 2018. River and Lake Ice Processes-Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe, Water 10, Art. no. 1586, 9 pp., https://doi.org/10.3390/w10111586.
- [22] Luomaranta, A., Ruosteenoja, K., Jylhä, K., Gregow, H., Haapala, J., Laaksonen, A., 2014. Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus A, 66 (1) Art. no. 22617, 18 pp., http://dx.doi.org/10.3402/tellusa.v66.22617.
- [23] Minns, C. K., Shuter, B. J., Fung, S. R., 2014. Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes Using Updated Ice-Date Models, CLIMATE CHANGE RESEARCH REPORT CCRR-40, Sci. Res. Branch, Ontario Forest Res. Inst. Ministry of Natural Resources, 52 pp.
- [24] Olonscheck, D., Mauritsen, T., Notz, D., 2019. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12 (6), 430-434, https://dx.doi.org/10.1038/s41561-019-0363-1.
- [25] Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fisher, G., Kindermann, G., Nakicenovic, N., Rafaj, P., 2011. RCP8.5: a scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33-57, https://dx.doi.org/10.1007/s10584-011-0149-y.
- [26] Rukšėnienė, V., Dailidienė, I., Myrberg, K., Dučinskas, K., 2015. A simple approach for statistical modelling of ice phenomena in the Curonian Lagoon, the south-eastern Baltic Sea. Baltica 28 (1), 11-18, https://dx.doi.org/10.5200/baltica.2015.28.02.
- [27] Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., Woolway, R. I., 2019. Widespread loss of Lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9 (3), 227-231, https://dx.doi.org/10.1038/s41558-018-0393-5.
- [28] Shirasawa, K., Ikeda, M., Takatuka, T., Ishikawa, M., Aota, M., Ingram, G., Belanger, C., Peltora, P., Takahashi, S., Matsuyama, M., Hudier, E., Fujiyoshi, Y., Kodama, Y., Ishikawa, N., 1994. Atomospheric and Oceanographic data report for Saromako lagoon of the SARES (Saroma-Resolute Studies) Project, 1992. Low Temperature Sci., Ser. A 52, 69-167, http://hdl.handle.net/2115/18791.
- [29] Stroeve, J. C., Serreze, M. C., Holland, M. M., Jennifer, E., Kay, J. E., Malanik, J., Barret, A. P., 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110 (3-4), 1005-1027, https://dx.doi.org/10.1007/s10584-011-0101-1.
- [30] Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Burger, G., Hanel, M., Kriaučiūnienė, J., Loukas, A., Osuch, M., Yucel, I., 2015. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 19, 1827-1847, https://dx.doi.org/10.5194/hess-19-1827-2015.
- [31] Sztobryn, M., 1994. Long-term changes in ice conditions at the Polish coast of the Baltic Sea. In: Proc. IAHR Ice Symposium. Norwegian Inst. Tech., 345-354.
- [32] Sztobryn, M., Przygrodzki, P., 2012. Climatological ice atlas for the western and southern. Baltic sea (1961-2010). In: Schmelzer, N., Holfort, J. (Eds.), Hamburg and Rostock: Bundesamt für Seeschifffahrt und Hydrographie. (BSH), 88 pp.
- [33] Sztobryn, M., Wójcik, R., Miętus, M., 2012. Occurrence of ice in the Baltic Sea - current state and expected changes in the future. In: Wibig, J., Jakusik, E. (Eds.), Climatic and oceanographic conditions in Poland and south Baltic Sea. IMGW PIB, Warsaw, 189-215, (in Polish).
- [34] Tarand, A., Nordli, P. Ø., 2001. The Tallinn temperature series reconstructed back half a millennium by use of proxy data. In: Ogilvie, A. E. J., Jónsson, T. (Eds.), The Iceberg in the Mist: Northern Research in pursuit of a “Little Ice Age”. Springer, Dordrecht, 189-199, https://dx.doi.org/10.1007/978-94-017-3352-6_9.
- [35] Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., Edmondset, J. A., 2011. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77-94, https://dx.doi.org/10.1007/s10584-011-0151-4.
- [36] Todd, M. C., Mackay, A. W., 2003. Large-Scale Climatic Controls on Lake Baikal Ice Cover. J. Climate 16 (19), 3186-3199, https://doi.org/10.1175/1520-0442(2003)016<3186:LCCOLB>2.0.CO;2.
- [37] van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K., 2011. The representative concentration pathways: an overview. Climatic Change 109, 5-31, https://dx.doi.org/10.1007/s10584-011-0148-z.
- [38] Woodward, G., Perkins, D. M., Brown, L. E., 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365 (1549), 2093-2106, https://dx.doi.org/10.1098/rstb.2010.0055.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8ea9aa3-fe5a-4a26-8de7-72f43380619d