Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recorded strong motion data in the Delhi region provide an excellent opportunity to study high-frequency decay parameter, kappa (κ) for the National Capital (Delhi) region and to further understand its implications to study the site effects characterized by different stations within the vicinity of the study region. The kappa values are estimated at 30 locations from 99 accelerograms of 19 earthquakes recorded in the Delhi region and are found to vary from place to place depending upon the controlling parameters, primarily the site characterization. The estimated average values of ‘κ’ lie in the range 0.0118–0.0537 s for the various locations of the region depending upon the source, path, and site characteristics of earthquakes considered in the present study. The distance dependence is found insignificant, while there is a scatter in the variation of κ values with that of magnitude which indicates that κ is more related to the site characteristic for the entire Delhi region which in turn reveals the fact of the basic criterion of the κ parameter. To affirm the total attenuation on the instruments, the site effects demonstrate the behavior of amplification to the geological exposure. It has been found that the various sites under consideration for the study area amplify between 0.6 and 7.0 Hz predominant frequency ( fpeak) and agree with the geological arrangements of the region. Based on the present study, the most vulnerable areas are the northeastern region of Delhi which lies in proximity to the food plains of Yamuna river and alluvial deposits of younger origins of the foreland basin along with the southwestern part of Delhi capital which is comprised of the water-saturated alluvial deposits. The estimated ‘κ’ values are found to be correlated with those of the estimated site amplification and are useful in strong ground motions simulation for the proper evaluation of seismic hazard to build a seismic risk resilient society.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2113--2127
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
- National Centre for Seismology, Ministry of Earth Sciences, New Delhi 110003, India
autor
- National Centre for Seismology, Ministry of Earth Sciences, New Delhi 110003, India
autor
- Department of Geophysics, Kurukshetra University, Thanesar, India
autor
- Department of Geophysics, Kurukshetra University, Thanesar, India
Bibliografia
- 1. Anderson JG, Hough SE (1984) A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993
- 2. Atik AL, Kottke A, Abrahamson N, Hollenback J (2014) Kappa (κ) scaling of ground-motion prediction equations using an inverse random vibration theory approach. Bull Seismol Soc Am 104(1):336–346. https://doi.org/10.1785/0120120200
- 3. Banerjee S, Kumar A (2018) Determination of seismic wave attenuation in Delhi, India, towards quantification of regional seismic hazard. Nat Hazards 92(2):1039–1064. https://doi.org/10.1007/s11069-018-3238-7
- 4. Bard PY, Bora SS, Hollender F, Laurendeau A, Traversa P (2020) Are the standard VS-Kappa host-to-target adjustments the only way to get consistent Hard-Rock ground motion prediction? Pure Appl Geophys 177(5):2049–2068. https://doi.org/10.1007/s00024-019-02173-9
- 5. Beresnev IA (2019) Interpretation of Kappa and fmax filters as source effect. Bull Seismol Soc Am 109:822–826. https://doi.org/10.1785/0120180250
- 6. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3):635–676. https://doi.org/10.1007/PL00012553
- 7. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24(1):99–138. https://doi.org/10.1193/1.2830434
- 8. Bora SS, Scherbaum F, Kuehn N, Stafford P (2014) Fourier spectral-and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bull Earthquake Eng 12(1):467–493
- 9. Bora SS, Scherbaum F, Kuehn N, Stafford P, Edwards B (2015) Development of a response spectral ground-motion prediction equation (GMPE) for seismic-hazard analysis from empirical Fourier spectral and duration models. Bull Seismol Soc Am 105(4):2192–2218
- 10. Bora SS, Scherbaum F, Kuehn N, Stafford P (2016) On the relationship between Fourier and response spectra: Implications for the adjustment of empirical ground-motion prediction equations (GMPEs). Bull Seismol Soc Am 106(3):1235–1253
- 11. Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Rbay. Bull Seismol Soc Am 60:29–61
- 12. Borcherdt RD (1994) Estimates of site-dependent response spectra for design (Methodology and Justification). Earthq Spectra 10:617–653. https://doi.org/10.1193/1.1585791
- 13. Bureau of Indian Standards (2002) IS 1893 (Part 1):2002 Criteria for Earthquake Resistant Design of Structures. Bureau of Indian Standard, New Delhi
- 14. Cabas A, Rodriguez-Marek A, Bonilla LF (2017) Estimation of site-specific kappa (κ0)-consistent damping values at KiK-net sites to assess the discrepancy between laboratory-based damping models and observed attenuation (of seismic waves) in the field. Bull Seismol Soc Am 107(5):2258–2271. https://doi.org/10.1785/0120160370
- 15. Campbell KW (2009) Estimates of Shear-Wave Q and κ0 for unconsolidated and semiconsolidated sediments in Eastern North America. Bull Seismol Soc Am 99:2365–2392. https://doi.org/10.1785/0120080116
- 16. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra 24(1):139–71. https://doi.org/10.1193/1.2857546
- 17. Chandler AM, Lam NTK, Tsang HH (2006) Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn Earthquake Eng 26(11):1004–1014. https://doi.org/10.1016/j.soildyn.2006.02.010
- 18. Chang SC, Wen KL, Huang MW, Kuo CH, Lin CM, Chen CT, Huang JY (2019) The high-frequency decay parameter (Kappa) in Taiwan. Pure Appl Geophys 176(11):4861–4879
- 19. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10:137–156. https://doi.org/10.1007/s10950-005-9006-7
- 20. Douglas J, Gehl P, Bonilla LF, Ǵlis C (2010) A κ model for mainland France. Pure Appl Geophys 167(11):1303–1315. https://doi.org/10.1007/s00024-010-0146-5
- 21. Edwards B, Ktenidou OJ, Cotton F, Abrahamson N, Van Houtte C, Fäh D (2015) Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock sites. Geophys J Int 202(3):1627–1645. https://doi.org/10.1093/gji/ggv222
- 22. Fernández AI, Castro RR, Huerta CI (2010) The spectral decay parameter kappa in Northeastern Sonora. Mexico Bull Seismol Soc Am 100(1):196–206. https://doi.org/10.1785/0120090049
- 23. Hanks TC (1982) Fmax. Bull Seismol Soc Am 72:1867–1879
- 24. Iyengar RN, Ghosh S (2004) Microzonation of earthquake hazard in Greater Delhi area. Curr Sci 87(9):1193–1202
- 25. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241
- 26. Ktenidou OJ, Gélis C, Bonilla LF (2013) A study on the variability of Kappa (κ) in a Borehole: implications of the computation process. Bull Seismol Soc Am 103(2A):1048–1068. https://doi.org/10.1785/0120120093
- 27. Ktenidou OJ, Cotton F, Abrahamson NA, Anderson JG (2014) Taxonomy of κ: a review of definitions and estimation approaches targeted to applications. Seismological Res Lett 85(1):135–146
- 28. Ktenidou OJ, Drouet S, Theodulidis N, Chaljub M, Arnaouti S, Cotton F (2012). Estimation of kappa (κ) for a sedimentary basin in Greece (EUROSEISTEST): correlation to site characterization parameters. In: Proceedings of 15th World Conference of Earthquake Engineering.
- 29. Kumar A, Mittal H (2018) Strong-motion instrumentation: current status and future scenario. Adv Indian Earthq Eng Seismol, pp 35–54. https://doi.org/10.1007/978-3-319-76855-7_3
- 30. Kumar S, Kumar D, Rastogi BK, Singh AP (2018) Kappa (K) model for kachchh region of western india. Geomatics Natural Haz Risk 9(1):442–455. https://doi.org/10.1080/19475705.2018.1447025
- 31. Kumar V, Chopra S, Choudhury P, Kumar D (2020) Estimation of near surface attenuation parameter kappa (κ) in Northwest and Northeast Himalaya region. Soil Dyn Earthquake Eng 136:106237. https://doi.org/10.1016/j.soildyn.2020.106237
- 32. Kumar A, Mittal H, Kumar R, Ahluwalia RS (2017) Empirical attenuation relationship for Peak Ground Horizontal Acceleration for North-East Himalaya. Vietnam J Earth Sci 39(1):46–56. https://doi.org/10.15625/0866-7187/39/1/9183
- 33. Lai TS, Mittal H, Chao WA, Wu YM (2016) A study on Kappa value in Taiwan using borehole and surface seismic array. Bull Seismol Soc Am 106:1509–1517. https://doi.org/10.1785/0120160004
- 34. Lancieri M, Madariaga R, Bonilla F (2012) Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophys J Int 189(1):469–480. https://doi.org/10.1111/j.1365-246X.2011.05327.x
- 35. Ministry of Earth Sciences (2016) A report on Seismic Hazard Microzonation of NCT Delhi on 1:10,000 scales. National Center for Seismology, Ministry of Earth Sciences Government of India.
- 36. Mishra OP (2020) Seismic Microzonation Study of South Asian Cities and Its Implications to Urban Risk Resiliency under Climate Change Scenario. Int J Geosci 11(4):197–237
- 37. Mishra OP, Kumar V, Gera SK (2020) A new insight into seismic attenuation characteristics of Northwest Himalaya and its surrounding region: Implications to structural heterogeneities and earthquake hazards. Phys Earth Planet Interiors: 306:106500.
- 38. Mittal H, Kumar A (2015) Stochastic finite-fault modeling of Mw5.4 earthquake along Uttarakhand-Nepal border. Natural Haz 75:1145–1166. https://doi.org/10.1007/s11069-014-1367-1
- 39. Mittal H, Kumar A, Ramhmachhuani R (2012) Indian national strong motion instrumentation network and site characterization of its stations. Int J Geosci 03:1151–1167. https://doi.org/10.4236/ijg.2012.326117
- 40. Mittal H, Kamal KA, Singh SK (2013a) Estimation of site effects in Delhi using standard spectral ratio. Soil Dyn Earthquake Eng 50:53–61. https://doi.org/10.1016/j.soildyn.2013.03.004
- 41. Mittal H, Kumar A, Kumar A (2013b) Site effects estimation in Delhi from the Indian strong motion instrumentation network. Seismol Res Lett 84:33–41
- 42. Mittal H, Kumar A, Kumar A, Kumar R (2015) Analysis of ground motion in Delhi from earthquakes recorded by strong motion network. Arab J Geosci 8:2005–2017. https://doi.org/10.1007/s12517-014-1357-3
- 43. Mittal H, Wu YM, Chen DY, Chao WA (2016) Stochastic finite modeling of ground motion for March 5, 2012, Mw 4.6 earthquake and scenario greater magnitude earthquake in the proximity of Delhi. Natural Haz 82:1123–1146. https://doi.org/10.1007/s11069-016-2236-x
- 44. Mittal H, Gupta S, Srivastava A, Dubey RN, Kumar A (2006) National strong motion instrumentation project: an overview. In: 13th symposium on earthquake engineering, Indian Institute of Technology, Roorkee :18–20.
- 45. Mittal H, Wu YM, Lin TL, Legendre CP, Gupta S, Yang BM (2019a) Time-dependent shake map for Uttarakhand Himalayas, India, using recorded earthquakes. Acta Geophys 67(3):753–63 67:753–763. https://doi.org/10.1007/s11600-019-00281-7
- 46. Mittal H, Wu Y-M, Sharma ML, Yang BM, Gupta S (2019b) Testing the performance of earthquake early warning system in northern India. Acta Geophys 67:59–75. https://doi.org/10.1007/s11600-018-0210-6
- 47. Mittal H, Sharma B, Chao W, Wu YM, Lin TL, Chingtham P (2020) A comprehensive analysis of attenuation characteristics using strong ground motion records for the Central Seismic Gap Himalayan Region, India. J Earthquake Eng, pp 1–26. https://doi.org/10.1080/13632469.2020.1768969
- 48. Mittal H (2011) Estimation of ground motion in Delhi. PhD Thesis, Indian Institute of Technology Roorkee, India
- 49. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. https://doi.org/10.1785/0120030207
- 50. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railw Tech Res Inst 30:25–33
- 51. Oth A, Bindi D, Parolai S, Di Giacomo D (2010) Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: Insights from KiK-net data in Japan. Geophys Res Lett 37(19). https://doi.org/10.1029/2010GL044572
- 52. Palmer SM, Atkinson GM (2020) The high-frequency decay slope of spectra (Kappa) for M ≥ 3:5 earthquakes on rock sites in eastern and western Canada. Bull Seismol Soc Am 110(2):471–488. https://doi.org/10.1785/0120190206
- 53. Pandey B, Jakka RS, Kumar A, Mittal H (2016) Site characterization of strong-motion recording stations of Delhi using joint inversion of phase velocity dispersion and H/V curve. Bull Seismol Soc Am 106:1254–1266. https://doi.org/10.1785/0120150135
- 54. Papageorgiou AS, Aki K (1983) A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I. Description of the model. Bull Seismol Soc Am 73(3):693–722. https://doi.org/10.1016/0148-9062(84)90498-4
- 55. Parolai S (2018) κ0: origin and usability. Bull Seismol Soc Am 108(6):3446–3456. https://doi.org/10.1785/0120180135
- 56. Perron V, Hollender F, Bard PY, Gélis C, Guyonnet-Benaize C, Hernandez B, Ktenidou OJ (2017) Robustness of kappa (κ) measurement in low-to-moderate seismicity areas: Insight from a site-specific study in provence. France Bull Seismol Soc Am 107(5):2272–2292. https://doi.org/10.1785/0120160374
- 57. Purvance MD, Anderson JG (2003) A comprehensive study of the observed spectral decay in strong-motion accelerations recorded in Guerrero. Mexico Bull Seismol Soc Am 93(2):600–611. https://doi.org/10.1785/0120020065
- 58. Sandhu M, Kumar D, Teotia SS (2017) Estimation of site amplification functions for the National Capital (Delhi) Region. India Natural Haz 85(1):171–195. https://doi.org/10.1007/s11069-016-2572-x
- 59. Sandhu M, Sharma B, Mittal H, Yadav RB, Kumar D, Teotia SS (2020) Simulation of strong ground motion due to active Sohna fault in Delhi, National Capital Region (NCR) of India: an implication for imminent plausible seismic hazard. Natural Haz 104(3):2389–2408. https://doi.org/10.1007/s11069-020-04277-1
- 60. Sharma J, Chopra S, Roy KS (2014) Estimation of source parameters, quality factor (Qs), and site characteristics using accelerograms: Uttarakhand Himalaya region. Bull Seismol Soc Am 104(1):360–380. https://doi.org/10.1785/0120120304
- 61. Sharma B, Chingtham P, Sutar AK, Chopra S, Shukla HP (2015a) Frequency dependent attenuation of seismic waves for Delhi and surrounding area. India Ann Geophys 58(2):0216. https://doi.org/10.4401/ag-6636
- 62. Sharma B, Mittal H, Kumar A (2015b) A reappraisal of attenuation of seismic waves and its relevance towards Seismic Hazard. Int J Adv Res 3(3):296–305
- 63. Silva W, Darragh R, Gregor N (1998) Reassessment of site coefficients and near-fault factors for building code provisions. Tech Rep Progr Elem II 98-HQGR- 1010
- 64. Singh SK, Mohanty WK, Bansal BK, Roonwal GS (2002) Ground motion in Delhi from future large/great earthquakes in the central seismic gap of the Himalayan Arc. Bull Seismol Soc Am 92(2):555–569. https://doi.org/10.1785/0120010139
- 65. Tsai CCP, Chen KC (2000) A model for the high-cut process of strong-motion accelerations in terms of distance, magnitude, and site condition: An example from the smart 1 array, Lotung. Taiwan Bull Seismol Soc Am 90(6):1535–1542. https://doi.org/10.1785/0120000010
- 66. Van Houtte C, Drouet S, Cotton F (2011) Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull Seismol Soc Am 101(6):2926–2941. https://doi.org/10.1785/0120100345
- 67. Van Houtte C, Ktenidou OJ, Larkin T, Holden C (2014) Hard-site κ0 (kappa) calculations for Christchurch, New Zealand, and comparison with local ground-motion prediction models. Bull Seismol Soc Am 104(4):1899–1913. https://doi.org/10.1785/0120130271
- 68. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79:579. https://doi.org/10.1029/98EO00426
- 69. Yadav R, Kumar D, Chopra S (2018) The high frequency decay parameter κ (Kappa) in the region of North East India. Open J Earthquake Res 7(02):141. https://doi.org/10.4236/ojer.2018.72009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8ea0055-ad05-4f21-83b8-8b84e8358bbb