Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we study a one-equation turbulence k-epsilon model that governs fluid flows through permeable media. The model problem under consideration here is derived from the incompressible Navier-Stokes equations by the application of a time-averaging operator used in the k-epsilon modeling and a volume-averaging operator that is characteristic of modeling unsteady porous media flows. For the associated initial- and boundary-value problem, we prove the existence of suitable weak solutions (average velocity field and turbulent kinetic energy) in the space dimensions of physics interest.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
197--240
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
- FCT - Universidade do Algarve, Faro, Portugal
- CMAFcIO - Universidade de Lisboa, Portugal
Bibliografia
- [1] B.V. Antohe, J.L. Lage, A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transf. 13 (1997), 3013–3024.
- [2] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, On the confinement of a viscous fluid by means of a feedback external field, C. R. Méc. Acad. Sci. Paris 330 (2002), no. 12, 797–802.
- [3] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem, J. Math. Fluid Mech. 6 (2004), no. 4, 439–461.
- [4] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier–Stokes problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), no. 3-4, 257–461.
- [5] S.N. Antontsev, H.B. de Oliveira, Finite time localized solutions of fluid problems with anisotropic dissipation, [in:] I.N. Figueiredo, J.F. Rodrigues, L. Santos (eds), Free Boundary Problems, International Series of Numerical Mathematics, vol. 154, Birkhäuser, Basel, 2006.
- [6] E. Aulisa, L. Bloshanskaya, L. Hoang, A. Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys. 50 (2009), 103102.
- [7] P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), no. 1–2, 111–149.
- [8] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L1 data, Nonlinear Anal. 19 (1992), no. 6, 573–579.
- [9] M. Bulíček, E. Feireisl, J. Málek, A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015.
- [10] M. Bulíček, R. Lewandowski, J. Málek, On evolutionary Navier–Stokes–Fourier type systems in three spatial dimensions, Comment. Math. Univ. Carolin. 52 (2011), no. 1, 89–114.
- [11] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831.
- [12] T. Chacón-Rebollo, R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, Springer New York, 2014.
- [13] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
- [14] P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness, Nonlinear Anal. 68 (2008), no. 6, 1462–1478.
- [15] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer New York, 2011.
- [16] T. Gallouët, J. Lederer, R. Lewandowski, F. Murat, L. Tartar, On a turbulent system with unbounded eddy viscosities, Nonlinear Anal. 52 (2003), no. 4, 1051–1068.
- [17] J. Lederer, R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413–441.
- [18] M.J.S. de Lemos, Turbulence in Porous Media, 2nd ed., Elsevier, Waltham, MA, 2012.
- [19] R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier–Stokes equation with an eddy viscosity, Nonlinear Anal. 28 (1997), no. 2, 393–417.
- [20] B. Mohammadi, O. Pironneau, Analysis of the k-epsilon Turbulence Model, Wiley-Masson, Paris, 1994.
- [21] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a porous medium, J. Fluid Eng. 121 (1999), no. 2, 427–433.
- [22] A. Mielke, J. Naumann, Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4, 321–326.
- [23] H.B. de Oliveira, A. Paiva, On a one equation turbulent model with feedbacks, [in:] S. Pinelas, Z. Došlá, O. Došlý, P. Kloeden (eds), Springer Proc. Math. Stat., vol. 164, Springer Cham, 2016, 51–61.
- [24] H.B. de Oliveira, A. Paiva, Existence for a one-equation turbulent model with strong nonlinearities, J. Elliptic Parabol. Equ. 3 (2017), no. 1–2, 65–91.
- [25] H.B. de Oliveira, A. Paiva, A stationary one-equation turbulent model with applications in porous media, J. Math. Fluid Mech. 20 (2018), no. 2, 263–287.
- [26] H.B. de Oliveira, A note on the existence for a model of turbulent flows through porous media, [in:] S. Pinelas, T. Caraballo, P. Kloeden, J. Graef (eds), Springer Proc. Math. Stat., vol. 230, Springer Cham, 2018, 21–38.
- [27] H.B. de Oliveira, A. Paiva, Partial regularity of the solutions to a turbulent problem in porous media, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3961–3981.
- [28] M.H.J. Pedras, M.J.S. de Lemos, On the definition of turbulent kinetic energy for flow in porous media, Int. Commun. Heat Mass Transfer 27 (2000), no. 2, 211–220.
- [29] J.-M. Rakotoson, Quasilinear elliptic problems with measures as data, Differ. Integral Equ. 4 (1991), no. 3, 449–457.
- [30] J. Simon, Compact sets in the space Lp(0, T;B), Ann. Mat. Pura Appl. 146 (1987), no. 4, 65–96.
- [31] R. Temam, Navier–Stokes Equations, 2nd ed., Elsevier North-Holland, New York, 1979.
- [32] K. Vafai (ed.), Handbook of Porous Media, 2nd ed., CRC Press, Boca Raton, FL (2005).
- [33] B. Wood, X. He, S.V. Apte, Modeling turbulent flows in porous media, Annu. Rev. Fluid Mech. 52 (2020), no. 1, 171–203.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8e62fae-00e1-4538-81d0-422c507c1150