PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parabolic turbulence k-epsilon model with applications in fluid flows through permeable media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we study a one-equation turbulence k-epsilon model that governs fluid flows through permeable media. The model problem under consideration here is derived from the incompressible Navier-Stokes equations by the application of a time-averaging operator used in the k-epsilon modeling and a volume-averaging operator that is characteristic of modeling unsteady porous media flows. For the associated initial- and boundary-value problem, we prove the existence of suitable weak solutions (average velocity field and turbulent kinetic energy) in the space dimensions of physics interest.
Słowa kluczowe
Rocznik
Strony
197--240
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • FCT - Universidade do Algarve, Faro, Portugal
  • CMAFcIO - Universidade de Lisboa, Portugal
Bibliografia
  • [1] B.V. Antohe, J.L. Lage, A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transf. 13 (1997), 3013–3024.
  • [2] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, On the confinement of a viscous fluid by means of a feedback external field, C. R. Méc. Acad. Sci. Paris 330 (2002), no. 12, 797–802.
  • [3] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem, J. Math. Fluid Mech. 6 (2004), no. 4, 439–461.
  • [4] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier–Stokes problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), no. 3-4, 257–461.
  • [5] S.N. Antontsev, H.B. de Oliveira, Finite time localized solutions of fluid problems with anisotropic dissipation, [in:] I.N. Figueiredo, J.F. Rodrigues, L. Santos (eds), Free Boundary Problems, International Series of Numerical Mathematics, vol. 154, Birkhäuser, Basel, 2006.
  • [6] E. Aulisa, L. Bloshanskaya, L. Hoang, A. Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys. 50 (2009), 103102.
  • [7] P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), no. 1–2, 111–149.
  • [8] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L1 data, Nonlinear Anal. 19 (1992), no. 6, 573–579.
  • [9] M. Bulíček, E. Feireisl, J. Málek, A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015.
  • [10] M. Bulíček, R. Lewandowski, J. Málek, On evolutionary Navier–Stokes–Fourier type systems in three spatial dimensions, Comment. Math. Univ. Carolin. 52 (2011), no. 1, 89–114.
  • [11] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831.
  • [12] T. Chacón-Rebollo, R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, Springer New York, 2014.
  • [13] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
  • [14] P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness, Nonlinear Anal. 68 (2008), no. 6, 1462–1478.
  • [15] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer New York, 2011.
  • [16] T. Gallouët, J. Lederer, R. Lewandowski, F. Murat, L. Tartar, On a turbulent system with unbounded eddy viscosities, Nonlinear Anal. 52 (2003), no. 4, 1051–1068.
  • [17] J. Lederer, R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413–441.
  • [18] M.J.S. de Lemos, Turbulence in Porous Media, 2nd ed., Elsevier, Waltham, MA, 2012.
  • [19] R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier–Stokes equation with an eddy viscosity, Nonlinear Anal. 28 (1997), no. 2, 393–417.
  • [20] B. Mohammadi, O. Pironneau, Analysis of the k-epsilon Turbulence Model, Wiley-Masson, Paris, 1994.
  • [21] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a porous medium, J. Fluid Eng. 121 (1999), no. 2, 427–433.
  • [22] A. Mielke, J. Naumann, Global-in-time existence of weak solutions to Kolmogorov’s two-equation model of turbulence, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4, 321–326.
  • [23] H.B. de Oliveira, A. Paiva, On a one equation turbulent model with feedbacks, [in:] S. Pinelas, Z. Došlá, O. Došlý, P. Kloeden (eds), Springer Proc. Math. Stat., vol. 164, Springer Cham, 2016, 51–61.
  • [24] H.B. de Oliveira, A. Paiva, Existence for a one-equation turbulent model with strong nonlinearities, J. Elliptic Parabol. Equ. 3 (2017), no. 1–2, 65–91.
  • [25] H.B. de Oliveira, A. Paiva, A stationary one-equation turbulent model with applications in porous media, J. Math. Fluid Mech. 20 (2018), no. 2, 263–287.
  • [26] H.B. de Oliveira, A note on the existence for a model of turbulent flows through porous media, [in:] S. Pinelas, T. Caraballo, P. Kloeden, J. Graef (eds), Springer Proc. Math. Stat., vol. 230, Springer Cham, 2018, 21–38.
  • [27] H.B. de Oliveira, A. Paiva, Partial regularity of the solutions to a turbulent problem in porous media, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3961–3981.
  • [28] M.H.J. Pedras, M.J.S. de Lemos, On the definition of turbulent kinetic energy for flow in porous media, Int. Commun. Heat Mass Transfer 27 (2000), no. 2, 211–220.
  • [29] J.-M. Rakotoson, Quasilinear elliptic problems with measures as data, Differ. Integral Equ. 4 (1991), no. 3, 449–457.
  • [30] J. Simon, Compact sets in the space Lp(0, T;B), Ann. Mat. Pura Appl. 146 (1987), no. 4, 65–96.
  • [31] R. Temam, Navier–Stokes Equations, 2nd ed., Elsevier North-Holland, New York, 1979.
  • [32] K. Vafai (ed.), Handbook of Porous Media, 2nd ed., CRC Press, Boca Raton, FL (2005).
  • [33] B. Wood, X. He, S.V. Apte, Modeling turbulent flows in porous media, Annu. Rev. Fluid Mech. 52 (2020), no. 1, 171–203.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8e62fae-00e1-4538-81d0-422c507c1150
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.