PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil development in a coal-burning environment : the Upper Silesian waste heaps of Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil development in burning coal-mining waste heaps is a rarely addressed phenomenon, especially in Poland and in relation to pyrometamorphic substrates. Eight samples were collected from 5 heaps, four of them obtained from Europe‘s highest “Szarlota” heap located in Rydułtowy. Traces of pedogenesis were observed in both thermally changed (pyrometamorphic) and megascopically unchanged substrates. Grain size distribution is variable, with the finest silt being most clearly associated with distinct, though modest, trace element (TE) enrichment, primarily of Sb, As and Pb, and Ba and Cu. Slight variations in soil mineralogy occur even in samples derived from various parts of the “Szarlota” heap. Goethite, however, is a frequent component in most samples studied; it is an important pedogenesis factor in the soils studied and seems to be correlated with salinity. To some extent, it also influences TE composition. Relatively invariable pH, moderate TE and nutrient contents, and a lack of Alw allows vegetation growth at most of the locations studied.
Rocznik
Strony
art. no. 24
Opis fizyczny
Bibliogr. 86 poz., fot., tab.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland
  • Cardinal Stefan Wyszyński University, Institute of Biological Sciences, Wóycickiego 1/3, 01-938 Warszawa, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Abramowicz, A., Rahmonov, O., Chybiorz, R., Ciesielczuk, J., 2021. Vegetation as an indicator of underground smoldering fire on coal-waste dumps. Fire Safety Journal, 121: 10.1016/j.firesaf.2021.103287.
  • 2. Amstaetter, K., Borch, T., Larese-Casanova, P., Kappler, A., 2009. Redox Transformation of Arsenic by Fe(II)-Activated Goethite (α-FeOOH). Environmental Science and Technology, 44: 102-108.
  • 3. Arefieva, O., Nazarkina, A.V., Gruschakova, N.V., Skurichina, J.E., Kolycheva, B., 2019. Impact of mine waters on chemical composition of soil in the Partizansk Coal Basin, Russia. International Soil and Water Conservation Research, 7: 57-63.
  • 4. Atanassova, I.D., Benkova, M.G., Simeonova, T.R., Nenova, L.G., Banov, M.D., Doerr, S.H., Rousseva, S.S., 2018. Heavy metal mobility and PAHs extractability relationships with soil hydrophobicity in coal ash reclaimed technogenic soils (Technosols). Global Symposium on Soil Pollution, 2-4 May 2018, Fao, Rome, Italy. Proceedings , Food and Agriculture Organization of the United Nations: 209-218. Food and Agriculture Organization of the United Nations.
  • 5. Awoyemi, O.M., Dzantor, E.K., 2017. Fate and impacts of priority pollutant metals in coal fly ash - soil - switchgrass plant mesocosms. Coal Combustion and Gasification Products, 9: 42-51.
  • 6. Bhatla, S.C., Lal, M.A., 2018. Plant Physiology, Development and Metabolism. Springer.
  • 7. Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behaviour. Geochimica et Cosmochimica Acta, 64: 2863-2878.
  • 8. Buccianti, A., Egozcue, J.J., Pawlowsky-Glahn, V., 2014. Variation diagrams to statistically model the behavior of geochemical variables: theory an applications. Journal of Hydrology, 519: 988-998.
  • 9. Cabala, J., Idziak, A.F., Szymala, A., 2006. Physicochemical and geophysical investigation of soils from former coal mining terrains in southern Poland. In: Proceedings of the 15th International Symposium on Mine Planning and Equipment Selection, Torino (eds. M. Cardu, R. Ciccu, E. Lovera and E. Michelotti): 534-548.
  • 10. Drenda, J., Różański, Z., Słota, K., Wrona, P., 2007. Zagrożenie pożarowe na zwałowiskach odpadów powęglowych (in Polish). Górnictwo i Geoinżynieria, 31: 149-157.
  • 11. de Rouw, A., 1994. Effect of fire on soil, rice, weeds and forest regrowth in a rain forest zaone (Côte d'Ivoire). Catena, 22: 133-152.
  • 12. Egozcue, J.J., Pawlowsky-Glahn, V., 2005. Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37: 795-828.
  • 13. Filzmoser, P., Hron, K., Reimann, C., 2010. The bivariate statistical analysis of environmental (compositional) data. STOTEN, 19: 4230-4238.
  • 14. Garrison, T., Hower, J.C., Fryar, A.E., D'Angelo, E., 2016. Water and soil quality at two eastern-Kentucky (USA) coal fires. Environmental Earth Sciences, 75: 574-587.
  • 15. Gusse, A.C., Miller, P.D., Volk, T.J., 2006. White-rot fungi demonstrate first biodegradation of phenolic resin. Environmental Science and Technology, 40: 4196-4199.
  • 16. Hammarstrom, J.M., Seal II, R.R., Meier, A.L., Kornfeld, J.M., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215: 407-431.
  • 17. Hänsch R., Mendel, R.R., 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12: 259-266.
  • 18. Iverson, L.R., Wali, M.K., 1992. Grassland rehabilitation after coal and mineral extraction in the Western United States and Canada. Ecosystem Rehabilitation, 2: Ecosystem analysis and synthesis. The Hague, Netherlands, SPB Academic Publishing: 85-129.
  • 19. Jiang, X., Lu, W.X., Zhao, H.Q., Yang, C., Yang, Z.P, 2014. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14: 1599-1610.
  • 20. Juda-Rezler, K., Kowalczyk, D., 2013. Size distribution and trace elements contents of coal fly ash from pulverized boilers. Polish Journal of Environmental Studies, 22: 25-40.
  • 21. Kabała, C., Drewnik, M., Jankowski, M., Marzec, M., Mendyk, Ł., 2019. Przewodnik terenowy do opisu gleb (in Polish). Polskie Towarzystwo Gleboznawcze. Warszawa.
  • 22. Kabata-Pendias, A., Pendias, H., 1989. Mikroelementy w pochvakh i rasteniyakh (in Russian). Mir, Moscow, Russia.
  • 23. Karczewska, A., Kabała, C., 2019. Metodyka analiz laboratoryjnych gleb i roślin (in Polish). 8rd editon. Akademia Rolnicza, Wrocław.
  • 24. Ketris, M.P., Yudovich, Ya. E., 2009. Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135-148.
  • 25. Kim, A.G., 2007. Greenhouse gases generated in underground coal-mine fires. GSA Reviews in Engineering Geology, 18: 1-13.
  • 26. Klatka, S.T., Malec, M., Ryczek, M., 2019. Analysis of spatial variability of selected soil properties in the hard coal post-mining area. Journal of Ecological Engineering, 20: 185-193.
  • 27. Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85: 91-118.
  • 28. Kokowska-Pawłowska, M., 2015. Petrographic and mineral variability of the rocks accompanying selected coal seams of the Poruba beds and their influence of the trace elements content. Mineral Resources Management, 31: 73-92.
  • 29. Kruszewski, Ł., 2013a. Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105: 91-109.
  • 30. Kruszewski, Ł., 2013b. Synthesis of diverse chemically and structurally unique substances from coal-mining heap waste during experiments in diffraction-coupled thermal chamber. Science for Industry: Necessity is the mother of invention. 2nd Networking event in the field of modern techniques in geosystem exploration, conference, Warsaw, Poland.
  • 31. Kruszewski, Ł., 2018. Geochemical Behavior of Trace Elements in the Upper and Lower Silesian Basin Coal-Fire Gob Piles of Poland. Chapter 19. In: Coal and Peat Fires: A Global Perspective, 5 - “Case Studies - Advances in Field and Laboratory Research”: 407-449.
  • 32. Kruszewski, Ł., Fabiańska, M., Ciesielczuk, J., Segit, T., 2017. Coal fires - titan - interstellar medium - life: what do they have in common? Potential gaseous bio-precursors in burning mining heaps. Life Origins 2017 conference (Early Earth and ExoEarths: origin and evolution of life), http://lifeorigins2017.ing.pan.pl/files/earlyearth2017/downloads/Life0rigins2017_B00K_0F_ABSTRACTS.pdf: 51-52.
  • 33. Kruszewski, Ł., Fabiańska, M.J., Ciesielczuk, J., Segit, T., Orłowski, R., Motyliński, R., Moszumańska, I., Kusy, D. 2018. First multi-tool exploration of a gas-conden-sate-pyrolysate system from the environment of burning coal mine heaps: an in situ FTIR and laboratory GC and PXRD study based on Upper Silesian materials. Science of The Total Environment, 640-641: 1044-1071.
  • 34. Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., 2019. Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, kelones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) - a re-investigation by means of in-situ FTIR extremal database approach. Science of The Total Environment, 698, doi: 10.1016/j.scitotenv.2019.134274.
  • 35. Kuna-Gwoździewicz, P., 2013. Emission of polycyclic aromatic hydrocarbons from the exhalation zones of thermally active mine waste dumps. Journal of Sustainable Mining, 12: 7-12.
  • 36. Kynčlová, P., Hron, K., Filzmoser, P., 2017. Correlation between compositional parts based on symmetrical balances. Mathematical Geosciences, 49: 777-796.
  • 37. Lehmann, E.L., 1975. Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.
  • 38. Lewińska-Preis, L., Fabiańska, M.J., Parzentny, H., Kita, A., 2008. Geochemical characteristics of the macromolecular part of crude and biodesulphurised coal density fractions. Geochemistry, 68: 279-293.
  • 39. Li, C., Liang, H., Liang, M., Chen, Y., Zhou, Y., 2018. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China. Environmental Science and Pollution Research, 25: 16652-16663.
  • 40. Lityński, T., 1971. Żyzność gleby i nawożenie (in Polish). PWN, Warszawa.
  • 41. Mamindy-Pajany, Y., Hurel, Ch., Marmier, N., Roméo, M., 2009. Arsenic adsorption onto hematite and goethite. Comptes Rendus Chimie, 12: 876-881.
  • 42. Martinez, A.C., Ressler, D.E., 2001. Soil surface conditions of an active coal mine fire, Centralia PA. GSA Annual Meeting, November 5-8, 2001, Paper No. 98-0.
  • 43. Meuser, H., 2013. Coal Mining Heaps (Sub-chapter 3.3.2). Mining Heaps (Chapter 3.2). In: Soil Remediation and Rehabilitation (eds. B.J. Alloway, J.T. Trevors, I. Colbeck, R.L. Crawford, W. Salomons): 59-69. Treatment of Contaminated and Disturbed Land. Springer Science+Business Media, Dordrecht, Germany.
  • 44. Misz-Kennan, M., Fabiańska, M., 2010. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81: 343-358.
  • 45. Mocek, A. (ed.), 2015. Gleboznawstwo (in Polish). PWN, Warszawa.
  • 46. Murray, J., Kirwan, L., Loan, M., Hodnett, B.K., 2009. In-situ synchrotron diffraction study of the hydrothermal transformation of goethite to hematite in sodium aluminate solutions. Hydrometallurgy, 95: 239-246.
  • 47. Nádudvari, Á., Fabiańska, M.J., Marynowski, L., Kozielska, B., Konieczyński, J., Smołka-Danielowska, D., Ćmiel, S., 2018. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. STOTEN, 628-629: 1462-1488.
  • 48. Nasdala, L., Pekov, I.V., 1993. Ravatite, C14H10, a new organic mineral species from Ravat, Tajikistan. European Journal of Mineralogy, 5: 699-705.
  • 49. Nelson, M., Chen, X.D., 2007. Survey of experimental work on the self-heating and sponianeous combusion of coal. GSA Reviews in Engineering Geology, 18: 31-83.
  • 50. Norton, J., Ouyang, Y., 2019. Controls and adaptive management of nitrification in agricultural soils. Frontiers in microbiology, 10: 1931.
  • 51. Novikova, S.A., Sokol, E.V., Novikov, I.S., Travin, A.V., 2015. Coal fires in the Kuznetsk Basin, Russia, chapter 19. In: Coal and Peat Fires: a Global Perspective (eds. G.B. Stracher, A. Prakash, E.V. Sokol): 510-541. Elsevier B.V.
  • 52. Nowak, J., 2011. Wpływ stopnia przeobrażeń termicznych odpadów powęglowych na ługowanie substancji do środowiska (in Polish). Górnictwo i Geologia, 6: 59-70.
  • 53. Ou, J., Li, H., Yan, Z., Zhou, Y., Bai, L., Zhang, Ch., Wang, X., Chen, G., 2018. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay. Scientific Reports, 8: 4618.
  • 54. Pałys, J., 1966. On genesis of brines in Upper Carboniferous in Upper Silesia (in Polish with English summary). Annales Societatis Geologorum Poloniae, 36: 121-154.
  • 55. Parfitt, R.L., Atkinson, R.J., 1976. Phosphate adsorption on goethite (α-FeOOH). Nature, 264: 740-742.
  • 56. Parker, R.L., 1967. Data of Geochemistry, 6th ed. Chapter D. Composition of the Earth's Crust. U.S. Geological Survey Professional Paper, 440-D.
  • 57. Parzentny, H., 1994. Lead distribution in coal and coaly shales in the Upper Silesian Coal Basin. Geological Quarterly, 38 (1): 43-58.
  • 58. Parzentny, H., Różkowska, A., Róg, L., 1999. Relationship between bed thickness, average ash content, and Zn and Pb content in coal in the Upper Silesian Coal Basin. Geological Quarterly, 43 (3): 365-374.
  • 59. Parzentny, H.R., Lewińska-Preis, L., 2006. The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB), Poland. Chemie der Erde, 66: 227-247.
  • 60. Pluta, I., Pindel, T., Janeczek, J., 2012. Aktywność izotopów radu w wodach kopalń Górnośląskiego Zagłębia Węglowe (in Polish). Wiadomości Górnicze, 63: 351-357.
  • 61. Querol, X., Zhuang, X., Font, O., Izquierdo, M., Alastuey, A., Castro, I., van Drooge, B.L., Moreno, T., Grimalt, J.O., Elvira, J., Cabańas, M., Bartroli, R., Hower, J.C., Ayora, C., Plana, F., López-Soler, A., 2011. Influence of soil cover on reducing the environmental impact of spontaneous combustion in coal waste gobs: a review and new experimental data. International Journal of Coal Geology, 85: 2-22.
  • 62. Raghad, M., Ameera, A., Munawar, I., 2016. Behavior of potassium in soil: a mini review. Chemistry International, 2: 58-69.
  • 63. Rietveld, H.M., 1967. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 22: 151-152.
  • 64. Różański, Z., 2018. Fire hazards in coal waste dumps - selected aspects of the environmental impact. 2018 IOP Conference Series Earth and Environmental Science, 174: 012013.
  • 65. Ruefer, A.C., Johnson, E.A., McTaggart, E., Myers, E., Wilson, C.J.N., Wallace, P.J., 2018. Determining a Partition Coefficient for Water in Plagioclase for Rhyolitic Eruptions. AGU Fall Meeting 2018, abstract #V33D-0276.
  • 66. Sánchez España, J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., Barettino, D., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20: 1320-1356.
  • 67. Schulthess, C.P., Ndu, U., 2017. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory. PLOS One, 12 (5), e0176743.
  • 68. Schwertmann U., 1971. Transformation of hematite to goethite in soils. Nature, 232: 624-625.
  • 69. Seredin, V.V., Finkelman, R.B., 2008. Metalliferous coals: a review of the main genetic and geochemical types. International Journal of Coal Geology, 76: 253-289.
  • 70. Smoliński, A., Rompalski, P., Cybulski, K., Chećko, J., Howaniec, N., 2014. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland. The Scientific World Journal (Hindawi Publishing Corporation), article ID 234204, doi 10.1155/2014/234204.
  • 71. Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V., Kalugin, V.M., 2005. Combustion metamorphism (in Russian). Publishing House of the SB RAS, Novosibirsk.
  • 72. Sokol, E.V., Volkova, N.I., 2007. Combustion metamorphic events resulting from natural coal fires. GSA Reviews in Engineering Geology, 18: 97-115.
  • 73. Srebrodolskiy, B.I., 1989. Tainy Sezonnykh Mineralov (in Russian). Nauka, Moscow.
  • 74. Stracher, G.B., 2007. The origin of gas-vent minerals: isochemical and mass-transfer processes. GSA Reviews in Engineering Geology, 18: 91-96.
  • 75. Szabó, D., Lovász, A., Weiszburg, T., Szakáll, S., Kristály, F., 2015. Ammonioalunite and adranosite-Al. New mineral species from the burning coal dumps of Pécs-Vasas, Hungary. Poster session presented at: 6th Mineral Sciences in the Carpathians Conference; 2015 May 16-19, Veszprém, Hungary.
  • 76. Tobin-Janzen, T., Shade, A., Marshall, L., Torres, K., Beblo, C., Janzen, C., Lenig, J., Martinez, A., Ressler, D., 2005. Nitrogen changes and domain bacteria ribotype diversity in soils overlying the Centralia, Pennsylvania underground coal mine fire. Soil Science, 170: 191-201.
  • 77. Tripathi, N., Singh, R.S., Chaulya, S.K., 2012. Dump Stability and soil fertility of a coal mine spoil in indian dry tropical environment: a long-term study. Environmental Management, 50: 695-706.
  • 78. Tripathi, N., Singh, R.S., Nathanail, C.P., 2014. Mine spoil acts as sink of carbon dioxide in Indian dry tropical environment. Science of The Total Environment, 468-469: 1162-1171.
  • 79. Uddin, M.K., 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: 438-462.
  • 80. Ugwu, I.M., Sherman, D.M., 2017. Irreversibility of sorption of cobalt to goethite (α-FeOOH) and dispartities in dissolution of aged synthetic Co-goethite. Chemical Geology, 467: 168-176.
  • 81. Upadhyay, N., Verma, S., Singh, A.P., Devi, S., Vishwakarma, K., Kumar, N., Pandey, A., Dubey, K., Mishra, R., Tripathi, D.K., Rani, R., Sharma, S., 2016. Soil ecophysiological and microbiological indices of soil health: a study of coal mining site in Sonbhadra, Uttar Pradesh. Journal of Soil Science and Plant Nutrition, 16: 778-800.
  • 82. Wagner, M., 1980. Przemiany termiczne węgla kamiennego w strefach pożarów hałd kopalnianych (in Polish). Zeszyty Naukowe Akademii Górniczo-Hutniczej - Geologia 6: 5-14.
  • 83. Witzke, T., 1996. Die Minerale der brennenden Halde der Steinkohlengrube “Deutschland-schacht” in Oelsnitz bei Zwickau. Aufschluss, 47: 41-48.
  • 84. Žáček, V., Opluštil, S., Máyová, A., Meyer, F.R., 1995. Die Mineralien von Kladno in Mittelböhmen, Tschechische Republik. Mineralien-Welt, 6: 13-30.
  • 85. Zając, E., Zarzycki, J., 2013. Wpływ aktywności termicznej zwałowiska odpadów węgla kamiennego na rozwój roślinności (in Polish). Rocznik Ochrona Środowiska, 15: 1862-1880.
  • 86. Zawadzki, S., (ed.), 1999. Gleboznawstwo (in Polish). PWRiL, Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8e3ca5e-3380-4f26-bf9a-eb2ec0f74bdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.