PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TEC derived from local GPS network in Pakistan and comparison with IRI 2016 and IRI PLAS 2017

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existing global network of continuously operating stand-alone GNSS reference stations provides an opportunity to estimate total electron content (TEC) from raw Global Positioning System (GPS) measurements. The TEC driven from a local GPS network in Pakistan was compared to two international models: IRI-2016 and IRI-PLAS 2017. The performance was analyzed statistically based on residual analysis, RMSE and correlation. It is observed that the TEC estimated by all three methods follows the same diurnal trend where it maximizes around noon (12 ∶ 00−14 ∶ 00LT) and reduces in the afternoon (15 ∶ 00−17 ∶ 00LT). Both empirical models provide a better estimation of nighttime TEC as compared to daytime TEC and exhibit maximum deviation in the month of April with the lowest deviation in December. The IRI-2016 underestimates TEC by 5 − 10TECU, whereas the IRI-PLAS 2017 overestimates TEC by 10 − 22TECU. However, the IRI-2016 conforms better to GPS-TEC (γ¯ = 0.9710) as compared to IRI-PLAS 2017 (γ¯ = 0.8337). The study shows that local GNSS stations in collaboration with TEC estimated from global models may be used in development of an efcient local TEC model over Pakistan which will not only assist in local ionosphere studies but also aid in improving the positioning accuracy.
Słowa kluczowe
EN
PL
Czasopismo
Rocznik
Strony
381--389
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • National University of Science and Technology (NUST), Islamabad, Pakistan
  • Zagreb University of Applied Sciences, Croatia and faculty of engineering University of Rijeka, Zagreb, Croatia
autor
  • National University of Science and Technology (NUST), Islamabad, Pakistan
autor
  • Institute of Space Technology, Islamabad, Pakistan
autor
  • Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
Bibliografia
  • 1. Adebiyi S, Adimula I, Oladipo O, Joshua B (2016) Asessment of IRI adn IRIPlas models over the African equatorial and low-latitude region. J Geophys Res 121:7281–7300
  • 2. Araujo-Pradere EA, Fuller-Rowell TJ, Codrescu MV (2002) STORM: An empirical storm-time ionospheric correction model. Radio Sci 37(5):1070
  • 3. Atici R (2018) Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PlAS over Istanbul. Trukey. Astrophy Space Sci 363(11):231
  • 4. Atiq M, Ameen M, Sadiq N (2018) The Study of GPS TEC and its Comparison with IRI-2016 and NeQuick2 Predictions at Sonmiani during High Solar Activity Period of Solar Cycle 24. J Space Explor 7(3):147
  • 5. Ayub M, Iqbal S, Ameen M, Reinisch B (2009) Study of maximum electron density NmF2 at Karachi and Islamabad during solar minimum (1996) and solar maximum (2000)and its comparison with IRI. Adv Space Res 43:1821–1824
  • 6. Belehaki A, Jakowski N, Reinisch B (2003) Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values. Radio Sci 38(6):1105
  • 7. Bhuyan P, Borah RR (2007) TEC derived from GPS network in India and comparison with the IRI. Adv Space Res 39:830–840
  • 8. Bilitza D (1986) International reference ionosphere: Recent developments. Radio Science 21:343–346
  • 9. Bilitza D (1990) International Reference Ionosphere 1990. NSSDC, Greenbelt, Marlyland, USA
  • 10. Bilitza D (2001) International Reference Ionosphere 2000. Rdaio Science 36:261–275
  • 11. Bilitza D et al (2017) International Reference Ionosphere 2016: from ionospheric climate to real- time weather predictions. Space Weather-the International Journal of Research & Applications 15:418–429
  • 12. Cesaroni C et al (2015) L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2015038
  • 13. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Gedoesy 83(3–4):191–198
  • 14. Ezguer R et al (2018) Nequick 2 and IRI Plas VTEC predictiions for low latitude and South American sector. Adv Space Res 61(7):1803–1818
  • 15. Gulyaeva T (2003) International standard model of the Earth’s ionosphere and plasmasphere. Astron Astrophys Trans 22(4–5):639–643
  • 16. Gulyaeva T, Arikan F, Hernandez-Pajares M, I, V., (2014) North–south components of the annual asymmetry in the ionosphere. Radio Science 49:485–496
  • 17. Haines G (1985) Spherical cap harmonic analysis. J Geophys Res Solid Earth 90:2583–2591
  • 18. Herna´ndez-Pajares, M., et al (2011) The ionosphere: effects on GPS modeling and the benefits for space geodetic techniques. J Geodesy 85:887
  • 19. Hernández-Pajares M et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83:263–275
  • 20. Klobuchar J (1987) Ionospheric time-delay algorithm for single frequency GPS users. IEEE Transactions Aerospace Electronic System 23(3):325–331
  • 21. Langley R et al (2002) Mapping the low latitude Ionosphere with GPS. GPS World 13(2):41–46
  • 22. Liu A et al (2019) Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: comparison with GPS-TEC, dSTEC, Jason-TEC and GIM. Advances in Space Ressearch. 63(12):3978–3992
  • 23. Liu J et al (2018) study of the ionospheric disturbances associated with strong earthquakes using the empirical orthogonal function analysis. J Asian Earth Sci. 171:225–232
  • 24. Li Z et al (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89(4):331–345
  • 25. Macalalad EP, Tsai L-C, Wu J (2016) Performance evaluation of different ionospheric models in singlefrequency code-based differential GPS positioning. GPS Solutions 20:173–185
  • 26. Madeeha, T., Ghulam, M. & M. Ayyaz, A., 2015. Comparing IRI and Regional Ionospheric Model with Ionosonde foF2 Measurements in Pakistan. Langkawi, Malaysia, Proceedings of the 2015 International Conference on Space Science and Commnuciation (IconSpace).
  • 27. Ma G et al (2014) Estimation of GPS intrumental biases from small scale network. Adv Space Res 54(5):871–882
  • 28. Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21:2083–2093
  • 29. Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionospheric total electron content using the GPS global network. s.l. ION-GPS, Institue of Navigation, pp 1323–1332
  • 30. Mosert M et al (2007) Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro. Adv Sapce Res 39:841–847
  • 31. Mukesh, R., P., S., P., S. & Elangovan, R. R., 2018. Comparison of total electron content of IRNSS with IRI and GPS-TEC at equatorial latitude station. s.l., AIP Conference Proceedings 2039, American Institute of Physics.
  • 32. Okoh D et al (2018) Assement of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measuerements. J Atmos Sol-Terr Phy. 170:1–10
  • 33. Oryema B, Jurua E, D’ujanga, F., Ssebiyonga, N., (2015a) Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv Space Res 56:1939–1950
  • 34. Oryema B, Jurua E, D’ujanga, F. & Ssebiyonga, N., (2015b) Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv Space Res 56:1939–1950
  • 35. Panda SK, Gedam SS (2016) Evaluation of GPS Standard Point Positioning with Various Ionospheric Error Mitigation Techniques. J Appl Geodesy. 10(4):211–221
  • 36. Park J et al (2011) Ionospheric detection of the 25 May 2009 North Korean underground nuclear test. Geophys Res Lett. https://doi.org/10.1029/2011GL049430
  • 37. Rawer K, Bilitza D, Ramakrishan S (1978) Goals and status of the International Reference Ionosphere. Rev Geophys 16:177–181
  • 38. Saastamoinen J (1972) Contribution of the theory of atmospheric refraction. Bulletin of Geodesique 105:279–298
  • 39. Schunk R, Nagy A (2000) Ionospheres. Cambridge University Press, Cambridge
  • 40. Tariku YA (2019) Performance evaluation of the IRI 2016 and IRI-Plas 2017 models over central Asian mid-latitude regions in the descending phase of solar cycle 24. Adv Space Res 64:1065–1077
  • 41. Tariq AM, Shah M, Ulukavak M, Iqbal T (2019) Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Adv Space Res 64:707–718
  • 42. Tsai H et al (2001) Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J Geophys Res Space Phys 106:30363–30369
  • 43. Venkatesh K et al (2015) Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J Geophys Res Space Phys 120:9117–9131
  • 44. Zakharenkova I, Cherniak I, Krankowski A, Shagimuratov I (2015) Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes. Adv Space Res 55:2070–2076
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8e21c07-822c-4ef8-a6ab-671abe666073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.