PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Laccase Immobilization on Biopolymer Carriers – Preliminary Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This preliminary studies concerns preparation of biopolymer carriers for immobilization of laccase from Trametes versicolor, based on sodium alginate, chitosan and on a combined alginate-chitosan biopolymers as well as the evaluation of their potential use in the decolourization process. The study is related to the assessment the using of various carriers in the immobilization methods of laccase. The dropping method using sodium alginate (2%) proved to be the most effective technique of enzyme immobilization. The study showed an improvement in the stability of immobilized laccases under the conditions of variable pH, relative to a free laccase. A loss in the stability of enzymes in alginate beads occurs at high temperatures, together with enzyme leaching and degradation. Enzyme leaching from the beads inhibits their preliminary low-temperature drying. Immobilization and drying of obtained capsules constitutes a promising method for improving enzyme stability. The results obtained as part of this study offer a valuable contribution to the future research on the possibility of using the prepared alginate beads to remove colour contamination from wastewater.
Słowa kluczowe
Rocznik
Strony
235--249
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Ali A., Ahmed S. 2018. A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 109, 273–286. DOI: 10.1016/j.ijbiomac.2017.12.078
  • 2. Bassanini I., Ferrandi E.E., Riva S., Monti D. 2021. Biocatalysis with laccases: An updated overview. Catalysts. MDPI. 11(1), 1–30. DOI: 10.3390/catal11010026
  • 3. Berger J., Reist M., Mayer J.M., Felt O., Peppas N.A., Gurny R. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 19–34. DOI: 10.1016/S0939-6411(03)00161-9
  • 4. Bilal M., Rasheed T., Nabeel F., Iqbal H.M.N., Zhao Y. 2019. Hazardous contaminants in the environmental and their laccase-assisted degradation – A review. Journal of Environmental Management, 234, 253–264. DOI: 10.1016/j.jenvman.2019.01.001
  • 5. Bourbonnais R., Paice M.G. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 1, 99–102. DOI: 10.1016/0014-5793(90)80298-w
  • 6. Brugnari T., Contato A.G., Pereira M.G., Freitas E.N. de Bubna G.A., Aranha G.M., Peralta R.M. 2020. Characterisation of free and immobilised laccases from Ganoderma lucidum: application on bisphenol A degradation. Biocatalysis and Biotransformation, 39(1), 1–10. DOI: 10.1080/10242422.2020.1792448
  • 7. Daâssi D., Rodríguez-Couto S., Nasri M., Mechichi, T. 2014. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration and Biodegradation, 90, 71–78. DOI: 10.1016/j.ibiod.2014.02.006
  • 8. Deska M., Kończak B. 2019. Immobilized fungal laccase as” green catalyst” for the decolourization process–State of the art. Process Biochemistry, 84, 112–123. DOI: 10.1016/j.procbio.2019.05.024
  • 9. Deska M., Kończak B. 2020. Operational stability of laccase under immobilization conditions (in Polish). Przemysł Chemiczny, 99/3(2020), 472–476. DOI: 10.15199/62.2020.3.22
  • 10. Didier de Vasconcelos G.M., Mulinari J., de Arruda Guelli Ulson de Souza S.M., Ulson de Souza A.A., de Oliveira D., de Andrade C.J. 2021. Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World Journal of Microbiology and Biotechnology, 37(6), 101. DOI: 10.1007/s11274-021-03067-6
  • 11. Drozd R., Rakoczy R., Wasak A., Junka A., Fijałkowski K. 2018. The application of magnetically modified bacterial cellulose for immobilization of laccase. International Journal of Biological Macromolecules, 108, 462–470. DOI: 10.1016/j.ijbiomac.2017.12.031
  • 12. Gahlout M., Rudakiya D.M., Gupte S., Gupte A. 2017. Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye. International Nano Letters, 7(3), 195–208. DOI: 10.1007/s40089-017-0215-1
  • 13. Hürmüzlü R., Okur M., Saraço N. 2021. Immobilization of Trametes versicolor laccase on chitosan/halloysite as a biocatalyst in the Remazol Red RR dye. International Journal of Biological Macromolecules, 192, 331–341. DOI: 10.1016/j.ijbiomac.2021.09.213
  • 14. Jafri N.A.A., Rahman R.A., Ali N. 2021. A Short Review on Recent Development of Laccase Immobilization on Different Support Materials, 2(1), 54–63. DOI: 10.30880/jsunr.2021.02.01.008
  • 15. Jaiswal N., Pandey V.P., Dwivedi U.N. 2016. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration, 86, 288–295. DOI: 10.1016/j.ijbiomac.2016.01.079
  • 16. Kończak B. 2017. Optymalizacja procesu kapsułkowania osadów ściekowych. Inżynieria ekologiczna. Ecological Engineering, 18(3), 168–174. DOI: 10.12912/23920629/69372
  • 17. Lin Q., Wang K., Gao M., Bai Y., Chen L., Ma H. 2017. Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw. Journal of the Taiwan Institute of Chemical Engineers, 76, 65–72. DOI: 10.1016/j.jtice.2017.04.010
  • 18. Lopes L., Vieira N., da Luz J.M., Silva M., Cardoso W.S., Kasuya M.C. 2020. Production of fungal enzymes in Macaúba coconut and enzymatic degradation of textile dye. Biocatalysis and Agricultural Biotechnology, 26, 101651. DOI: 10.1016/j.bcab.2020.101651
  • 19. Lu L., Zhao M., Wang Y. 2007. Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization. World Journal of Microbiology and Biotechnology, 23(2), 159–166. DOI: 10.1007/s11274-006-9205-6
  • 20. Mishra S., Maiti A. 2019. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Technologies and Environmental Policy, 21, 783–781. DOI: 10.1007/s10098-019-01681-5
  • 21. Mohammadi M., As’habi M.A., Salehi P., Yousefi M., Nazari M., Brask J. 2018. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. International Journal of Biological Macromolecules, 109, 443–447. DOI: 10.1016/j.ijbiomac.2017.12.102
  • 22. Noreen S., Asgher M., Hussain F., Iqbal A. 2016. Performance improvement of Ca-alginate bead crosslinked laccase from Trametes versicolor IBL04. BioResources, 11(1), 558–572. DOI: 10.15376/biores.11.1.558-572
  • 23. Okoniewska E. 2021. Removal of selected dyes on activated carbons. Sustainability (Switzerland), 13(8). DOI: 10.3390/su13084300
  • 24. Olajuyigbe F.M., Adetuyi O.Y., Fatokun C.O. 2019. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Int J Biol Macromol., 15(125), 856–864. DOI: 10.1016/j.ijbiomac.2018.12.106.
  • 25. Rafiee F., Rezaee M. 2021. Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol, 15(179), 170–195. DOI: 10.1016/j.ijbiomac.2021.02.198
  • 26. Ramírez-Montoya L.A., Hernández-Montoya V., Montes-Morán M.A., Jáuregui-Rincón J., Cervantes F.J. 2015. Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. Journal of Molecular Liquids, 212, 30–37. DOI: 10.1016/j.molliq.2015.08.040
  • 27. Ratanapongleka K., Punbut S. 2018. Removal of acetaminophen in water by laccase immobilized in barium alginate. Environmental Technology (United Kingdom), 39(3), 336–345. DOI: 10.1080/09593330.2017.1301563
  • 28. Sampaio L.M., Padrão J., Faria J., Silva J.P., Silva C.J., Dourado F., Zille A. 2016. Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr. Polym., 145, 1–12. DOI: 10.1016/j.carbpol.2016.03.009
  • 29. Saoudi O., Ghaouar N. 2019. Biocatalytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone. International Journal of Biological Macromolecules, 128(1), 681–691. DOI: 10.1016/j.ijbiomac.2019.01.199
  • 30. Segale L., Giovannelli L., Mannina P., Pattarin F. 2016. Calcium Alginate and Calcium AlginateChitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase. Scientifica, 2016, 5062706, 1–8. DOI: 10.1155/2016/5062706
  • 31. Shi K., Liu Y., Chen P., Li Y. 2021. Contribution of Lignin Peroxidase, Manganese Peroxidase, and Laccase in Lignite Degradation by Mixed WhiteRot Fungi. Waste and Biomass Valorization, 12(7), 3753–3763. DOI: 10.1007/s12649-020-01275-z
  • 32. Shokri Z., Seidi F., Karami S., Li C., Saeb M.R., Xiao H. 2021. Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers. 262, 117963. DOI: 10.1016/j.carbpol.2021.117963
  • 33. Singh H., Chauhan G., Jain A.K., Sharma S.K. 2017. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions, 5(1), 122–135. DOI: 10.1016/j.jece.2016.11.030
  • 34. Taqieddin E., Amiji M. 2004. Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials, 25(10), 1937–194. DOI: 10.1016/j.biomaterials.2003.08.034
  • 35. Verma K., Saha G., Dubey V.K. 2019. Biochemical characterization of a stable azoreductase enzyme from Chromobacterium violaceum: Application in industrial effluent dye degradation. International Journal of Biological Macromolecules, 121, 1011–1018. DOI: 10.1016/j.ijbiomac.2018.10.133S
  • 36. Viswanath B., Rajesh B., Janardhan A., Kumar A.P., Narasimha G. 2014. Fungal laccases and their applications in bioremediation. Enzyme Research, 2014, 1–21. DOI: 10.1155/2014/163242
  • 37. Wong S., Ghafar N.A., Ngadi N., Razmi F.A., Inuwa I.M., Mat R., Amin N.A.S. 2020. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Journal of Molecular Liquids, 212, 30–37. DOI: 10.1016/j.molliq.2015.08.040
  • 38. Wong S., Ngadi N., Inuwa I.M., Hassan O. 2018. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175, 361–375. DOI: 10.1016/j.jclepro.2017.12.059
  • 39. Yang J., Li W., Bun Ng T., Deng X., Lin J., Ye X. 2017. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in Microbiology, 8(832), 1–24. DOI: 10.3389/fmicb.2017.00832.
  • 40. Zdarta J., Meyer A.S., Jesionowski T., Pinelo M. 2018. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts, 8(2), 92, 1–27. DOI: 10.3390/catal8020092
  • 41. Zheng F., Cui B.-K., Wu X.-J, Meng G., Liu H.-X., Si J. 2016. Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration & Biodegradation, 110, 69–78. DOI: 10.1016/j.ibiod.2016.03.004
  • 42. Zhou W., Zhang W., Cai Y. 2021. Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403, 126272. DOI: 10.1016/j.cej.2020.126272
  • 43. www.sigmaaldrich.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8e002d6-201f-4237-8f7b-a4c13a711f6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.