Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we consider some distributions of maxima of excursions and related variables for standard random walk and Brownian motion. We discuss the infinite divisibility properties of these distributions and calculate their Lévy measures. Lastly we discuss Chung's remark related with Riemann's zeta functional equation.
Czasopismo
Rocznik
Tom
Strony
89--104
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Graduate School of Commerce and Management, Hitotsubashi University, Naka 2.1, Kunitachi, Tokyo 186.8601, Japan
autor
- Laboratoire de Probabilitbs et Moddles Alkatoires, Université Paris VI, casier 188,4, place Jussieu, 75 252 Paris cedex 05, France
Bibliografia
- [1] J. Bertoin, T. Fujita, B. Roynette, M. Yor, On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times, Probab. Math. Statist. 26 (2006), pp. 315-366.
- [2] P. Biane, La fonction de zêta de Riemann et les probabilitis, in: La fonction de zêta, N. Berline and C. Sabbagh (Eds.), Ec. Polytech., Palaiseau 2003, pp. 165-193.
- [3] P. Biane, J. Pitman and M. Y or, Probabilistic interpretation of the Jacobi and the Riemann zeta functions via Brownian excursions, Bull. Amer. Math. Soc. 38 (2001), pp. 435-465.
- [4] P. Biane and M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. 111 (1987), pp. 23-101.
- [5] P. Biane and M. Yor, Quelques précisions sur le méandre brownien, Bull. Sci. Math. 112 (1988), pp. 101-109.
- [6] K. L. Chung, Excursions in Brownian motion, Ark. Mat. 14 (1976), pp. 155-177.
- [7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York 1968.
- [8] T. Fujita and M. Yor, A warning about an independence property related to random Brownian scaling, this fascicle, pp. 105-108.
- [9] J. Pitman and M. Yor, Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, in: Itô's Stochastic Calculus and Probability Theory, N. Ikeda, S. Watanabe, M. Fukushima, H. Kunita (Eds.), Springer, Berlin-Heidelberg-New York 1996, pp. 293-310.
- [10] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition, Springer, 2005.
- [11] D. Williams, Brownian motion and the Riemann zeta function, in: Disorder in Physical I Systems. Festschrift for J. Hammersley, D. Welsh and G. Grimmett (Eds.), Oxford 1990, pp. 361-372.
- [12] M. Yor, Some Aspects of Brownian Motion. Part I: Some Special Functionals, Lectures Math. ETH Zürich, Birkhäuser, 1992.
- [13] M. Yor, Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems, I Lectures Math. ETH Zurich, Birkhäuser, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8dd949b-6a76-44d0-8c55-d9282328f6f0