Genetic Algorithms, Genetic Programming, Adaptivechanisms

Juraj SPALEK Michal GREGOR"

ADAPTIVE SWITCHING OF MUTATION RATE FOR
GENETIC ALGORITHMS AND GENETIC
PROGRAMMING

Abstract
The paper concerns the application of Genetic Atgors and Genetic
Programming to complex tasks such as automatedjnlesi control systems,
where the space of solutions is non-trivial and ntaytain discontinuities.
An adaptive value-switching mechanism for mutatate control is proposed.
It is shown that the proposed mechanism is usefpkéventing the search from
getting trapped in local extremes of the fitnesslkcape.

INTRODUCTION

Genetic Algorithms represent a well-known optimizatmethod recognized in particular
for its flexibility in representation of solutiorend for its ability to produce reasonably fit
results in a reasonable amount of time. Genetigmaroming applies the theory of Genetic
Algorithms to evolving computer programs, usuadipresented by syntactic trees.

There is a multitude of research papers that aimpzove convergence and robustness of
both methods. Some of these concentrate on paraemtéol, that is to say on setting and
modifying various parameters of the algorithm.

This paper presents an adaptive value-switchinghar@sm for control of the mutation
rate, which aims to decrease the probability tihat $earch will become trapped in local
maxima by increasing mutation probability to a higlue once such scenario is detected.

GENETIC ALGORITHMS AND GENETIC PROGRAMMING

Although the methods in question are relatively Iw&lown, let us first present some
fundamental information about both — Genetic Algoris (GA) and Genetic Programming
(GP).

U Prof. Ing. Juraj Spalek, PhD. — Department of Guretnd Information Systems, Faculty of Electrical
Engineering, University of Zilina, Univerzitna 11@ 26 Zilina, Slovak Republic,
juraj.spalek@fel.uniza.sk

Bc. Michal Gregor — Department of Control and Infation Systems, Faculty of Electrical
Engineering, University of Zilina, Univerzitna 11@ 26 Zilina, Slovak Republic,
o0.m.gregor@gmail.com

30

Genetic algorithms represent one of the several padational techniques based on
simulation of evolution, a process based on thecplie of natural selectionthat is, on the
survival of the fittestThe genetic algorithm operates on a populationdif/iduals.

The individuals represent various solutions of ec#fir problem. The main principle of the
algorithm is as shown in figure 1.

The first step is to generate the initial populatie this typically involves generating
a group of random individuals. The next step ipésform evaluation of those individuals,
which enables the algorithm to compare the indialduo each other and, furthermore, to
introduce the survival of the fittest: the indivads with the best scores (also knowrfitgess
in the genetic algorithm terminology) are the nlis&ly” to participate irreproduction that is,
in forming the next generation. This is analogaughe natural selection process, in which the
fitter individuals have greater chance to surviud & reproduce.

Stopping the evolution

in case the defined
conditions are met \

Selection

Generation of | Evaluation of

the initial A
population the individuals

Reproduction

— Mutation — Crossover &

Fig. 1. The general principle of genetic algorithms

9 0)

Fig. 1. A simple example of a syntactic

Genetic programming (GP) is a technique developgdJbhn Koza (seeGenetic
Programming: On the Programming of Computers by heaf Natural Selectioffl]). It
applies the theory of Genetic Programming to ttsk t@af evolving computer programs. The
main idea of Genetic Programming is the way in Wwhice individuals are represented — by
syntactic trees (also known as parse trees). Fghofvs a simple example of a syntactic tree

that codes the expressi x.y+ Inx.

* However, we usually refrain from directly choogithe besh individuals as that tends to reduce
diversity, which leads to getting trapped in a laodareme.

31

For syntactic trees crossover is usually done bgpping 2 randomly selected sub-trees of the
2 parent individuals, while mutation may be impletegl by replacing a randomly selected
sub-tree by a newly generated one. For a moreleeétatroduction to the problem refer to [1]
or [2].

THE ARTIFICIAL ANT PROBLEM

The artificial ant problem described by John Kazdlj is essentially a trail-following task.
The actor — an artificial ant — is supposed to gat@ in an environment following an irregular
path consisting of pieces of food which it colledke ant has very limited sensing capabilities
— it only sees a single tile right in front of iohn Koza successfully solves the problem by
applying Genetic Programmihg

In our work we have set some additional requiresienncerning the form of the solution
— the evolved controller should, when executedirrethe action that the ant is to execute next
instead of calling functors that directly execuie tiction and wait for its completion. The set
of terminals contains persistent variables andctir@roller has access to a pre-set number of
its previous inputs and outputs.

Controllers based on such mode of execution sedra tauch more difficult to evolve than
those originally proposed by Koza. The search Ugggts trapped in a local maximum from
which it is often unable escape.

EXISTING APPROACHES TO PARAMETER CONTROL

In some applications based on the theory of gemdgiarithms, the optimization task may
be so difficult — with a complex space includingr@at number of local optima in which the
search process can get trapped — that additioclhiggues may be required to find the global
optimum. Genetic programming does in a multitudetaxtks serve as an especially good
example of the problem, as it evolves computer aog and it is obvious that two very
similar computer programs may produce drasticalffeent results and thus the space of
solutions is highly complex.

Among the approaches that aim to prevent gettimgpied in a local optimum are adaptive
schemes that observe various parameters of thetalgoor the search process itself and using
the observed values adapt some of the parametkesapproaches to parameter setting can
basically be divided into the following categori8§ [4]:

« static parameter control,

« dynamic parameter control,

» adaptive parameter control,

« self-adaptive parameter control.

Static Parameter Control

The common feature of approaches falling into tlaitegory is that the setting they provide
remains constant for the entire duration of thelwianary process. There are many works
analysing the problem of finding optimum settings farameters like mutation probability and

T See [1] for detailed information about the saluti

32

crossover probability. Some of these are listed3in e.g. the work of Muhlenbein, which
proposes the following formula for the mutation pability:

pn=1/L, ()

where L is the length of the bit string by which the indwval is represented.
Dynamic Parameter Control
As stated in [4] dynamic parameter approaches #jlgiqorescribe a deterministically

decreasing schedule over a number of generatiodspaovides a formula for mutation
probability derived by Fogarty:

1 0.11375
+ 1

— 2
24C 2 @

pa(t)=

wheret is the generation counter.
Articles [3], [4] both refer to a more general eegsion derived by Hesser and Méanner:

[{ /lt
ex
\f , 3)

whereqa, g, yare constants} is the population size artlis the generation counter aLlis
again the length of the bit string.

Adaptive Parameter Control
Adaptive parameter control techniques monitor tearch process itself and provide

feedback. Some examples can be found in [5]. Theoasi propose the following formulas for
crossover and mutation probability respectively:

(4)

33

®)

where f is the fitness value of the individual to be methi ¢’ is the larger of the fitness
values of the individuals to be crossed ik,dand k, are constants. It is required ttk, :and
k, be less than 1.0 in order to constrginand p_ to the range o<0,]> .Thep =k, f'<f

and p =k, f<f expressions are to prevent crossover and mutgtfobabilities from

exceeding 1.0 for suboptimal solutions.
Authors of [5] also observe thp and p are zero for the solution with maximum fitness

and that .=k for t'= f, while p_=k, for f= f. For further details and for information
concerning setting the values of the constants tefgs].

Self-adaptive Parameter Control

When using the self-adaptive parameter control @gagr, parameters such as mutation rate
and crossover probability of each individual aret phiits genome and are evolved with it. As
stated in [4], the idea behind this is that a gpadameter value will provide an evolutionary
advantage to the individual. For further referesee [3] or [4].

ADAPTIVE VALUE-SWITCHING OF MUTATION RATE
Motivation

Most of the existing parameter setting mechanisasspresented in the previous chapter,
either focus on setting GA-specific parameters aghkength of the bit string (e.g. rule (1)), or
are not adaptive (e.g. (2) and (3)). The adaptieehanism described in [5] (formulas (4) and
(5)) seems more fit to the task because it implasmeartain form of convergence detection
based on comparison of the maximum and averagesftmalues. However this approach does
little to solve the problem of getting trapped itoaal optimum as the method does not discern
between local and global optima.

Furthermore — as mentioned hereinbefore — equat)rsnd (3) assign the best individual
zero crossover and mutation probabilities, whilsigring high probabilities to less fit
individuals. The reasoning behind this is thatldss fit individuals can safely be disrupted by
high mutation rates and recombined by crossoveus(temploying the solutions with
subaverage fitness to search the space [5]), Wigldighly fit individuals should be preserved.

However, such approach has a very obvious downsghdeh the authors do not seem to
address — the highly fit individuals obviously caint the most excellent genetic material
available and by disallowing mutation and crossdeethese individuals the genetic code they
carry becomes isolated and is not used to geneeatesolutions.

34

Description of the Proposed Adaptive Mechanism

The idea that the most fit solutions should surwvessover and mutation unmodified is
valid, yet that feature can be enforced by usiriiset*. Keeping that in mind we propose a
different adaptation scheme in order to addressother issues. The main idea is that the
mutation probability should be increased to a highue when the search has become trapped
in an extreme so as to provide the search procéissyew genetic material some of which may
previously have been unavailable. To determine kdrethe search has become trapped the
adaptive mechanism observes the change of avatagssfin time.

To describe the solution in more detail — the atgor works with 2 values of mutation
probability — the normal value and the high vallibe algorithm switches from the normal
value to the high value once the trigger critedativates.

The trigger criterion itself is based on a meashia¢ we will herein term delta sum

A4S = a4, + % , ®)

where 45 is the delta sum in generatiinand f, is the average fitness in generatiand «

is the feedback coefficient (the experiments haentcarried out fcg = 0.4).

If the delta sum is lower than a pre-set valueafpredefined number of generations, that is
to say the increase of average fitness in theftagtgenerations is low, indicating that the
search has become trappedthe mutation probability is set to its high \@lso as to provide
the search with new genetic material. As mentiobefbre, when used in conjunction with
elitism it is guaranteed that the best solutionasdestroyed by the high mutation probability.

The mutation probability is reset back to its nore@ue when at least one of the following
conditions is true:

- the average fithess increases enough to produdiicently large delta sum;
« the maximum fitness increases;

« mutation has been set to its high value for atInagenerations.

The n-generation limit is to ensure that the activatitmes not go on indefinitely (with the
high mutation probability it is not very likely théhe average fitness will increase enough to
satisfy the first condition and maximum fitness nmay increase as well).

It has been observed that average fitness typicibreases when the criterion activates
because the search process is to a large extampwid by the high mutation probability.
However after tha-generation limit forces the mutation rate backsmormal value, average
fithess tends to increase rapidly, thus usuallyingpaway from the local extreme.

Experimental Results

Several experiments have been carried out — Figh@vs performance of the search
algorithm with the AGA adaptive mechanism propose¢b] with constants set according to

T The best individual is copied to the next genenatinmodified.
§ This may also indicate convergence to the glosiimum, it is, however, hardly possible to tetl
and local maxima apart unless the algorithm is idiexwith additional problem-specific data.

35

recommendations. It also shows performance of #dachk algorithm without any adaptive
mechanism and with the adaptive mechanism proposéhis paper. The maximum fitness
value achieved is shown for each of the 5 runsalysgol.

As shown, search achieves suboptimal results whening with no adaptive mechanism.
This can be ascribed to its inability to escapemfrtbocal extremes. With no adaptive
mechanism the search has not found the global aptiffitness = 89) in any of the 5 runs.

As expected, the AGA mechanism has caused furtsteridration and its results are even
worse than those produced in the previous case.

The Value-switching adaptive mechanism proposethim work improves the process of
search — in 2 of the runs the global optimum ismfhuyet in certain cases not even the high
mutation rate is guaranteed to help the searctpedoam the local maximum (runs 2, 3, 4).

100
90 \
§ 80 /
QL 70 \
k= /
[&]
g 60 AGA mechanism
8 50 \ / * *No Adaptive
=] 40 - _ 7. Mechanism
= 'S, R S, = Value-switching
S 30 . X s . . Adaptive
----- ’ ~ -
£ Mechanism
X 20 .-
= 10 . L. . e
0
1 2 3 4 5
ofrun

Fig. 2. Comparison of the AGA Adaptive Mechanism
and the Value-switching Adaptive Mechanism

Suggestions for Further Work

It has been shown that the adaptive mechanism idedcin this work is able to effect
considerable improvements and that it is able toesextent prevent getting trapped in local
maxima. Further experiments should now be carrigdroorder to ascertain that the principle
is valid for a wider range of tasks.

It has also become apparent that even with the Imgiation rates it is not always
guaranteed that the search will indeed escape fhemocal maximum. Value-switching, or
piecewise continuous relationships for other patarsecould perhaps help to alleviate the
problem — this issue requires further investigation

CONCLUSION

It is well known that search processes based oetigealgorithms and genetic program-
ming are prone to getting trapped in local maxinmeemexploring highly complex spaces.

36

As shown in the paper, search process based orstdmelard genetic programming
approach fails to find the global optimum when #&xbko the modified version of the artificial
ant problem.

This paper investigates the problem and proposeslaptive mechanism for mutation rate
control, which should help the search to escapm faral extremes. As shown, the results are
considerably better than those of the standardtgemegramming approach.

Although the results are significantly better, etlea adaptive value-switching of mutation
rate as here proposed cannot always guaranteethtbaprocess will escape from a local
maximum. It is possible that value-switching, oeqawise continuous relationships for other
parameters could help to alleviate the problemhSpproaches could provide area for further
research.

This paper is a part of a more comprehensive redeaupported by: ASFEU 26220220049.

REFERENCES

1. KOZA J. R.:Genetic Programming: On the Programming of Computsr Means of
Natural SelectionThe MIT Press. Cambridge, Massachusetts, 1998N 18-262-
11170-5

2. HYNEK J.: Genetické algoritmy a genetické programovdafada Publishing, a. s.
Praha, 2008. ISBN 978-80-7300-218-3

3. EIBEN A. E., ROBERT, H., MICHALEWICZ, Z.: Parameter Control in
Evolutionary AlgorithmsIEEE Transactions of Evolutionary Computation:1999.
http://www.gpa.etsmtl.ca/cours/sys843/pdf/Eiben1p&b

4. THIERENS, D.:Adaptive mutation rate control schemes in gendgorithms
Proceedings of the 2002 IEEE World Congress on QGoatipnal Intelligence:
Congress on Evolutionary Computation, 2002.
http://dynamics.org/~altenber/UH_ICS/EC_REFS/GP_8EIEC/2002/GP_WCCI_
2002/7315.PDF

5. SRINIVAS, M., PATNAIK, L. M.: Adaptive Probabilities of Crossover and Mutation
in Genetic AlgorithmsIEEE Transactions on Systems, Man and Cybernegiés
1994. http://eprints.iisc.ernet.in/archive/00006@2/adaptive.pdf

37

	ADAPTIVE SWITCHING OF MUTATION RATE FOR GENETIC ALGORITHMS AND GENETIC PROGRAMMING

