PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using an Interdigital Micromixer for Separation of In3+ from Zinc Hydrometallurgical Process with D2EHPA as an Extractant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experiments were performed in an interdigital micromixer with 30 microchannels (40 μm width of each channel) to separate In3+, Fe3+ and Zn2+ from sulfate solutions using Di-(2-ethylhexyl)phosphoric acid (D2EHPA) as the extractant. The effects of pH, extractant concentration and flow rate on the extraction efficiency and flow rate on mass transfer coefficient of In3+, Fe3+ and Zn2+ were investigated. At a phase flow rate of 7.0 mL/min and initial solution pH of 0.423, the extraction efficiency of In3+, Fe3+ and Zn2+ was 99.29%, 3.43% and 2.54%, respectively and mass transfer coefficient of In3+, Fe3+ and Zn2+ was 144.307 s-1,1.018 s-1 and 0.750 s-1. Then, the loaded organic phase was stripped in an interdigital micromixer. At a phase flow rate of 9.0 mL/min and HCl concentration of 160 g/L, stripping efficiency of In3+ was 98.92% and mass transfer coefficient of In3+ was 169.808 s-1, while concentration of Fe3+ and Zn2+ was lower than 0.005 g/L with good separation of In3+ from Fe3+ and Zn2+.
Twórcy
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan, 650093, China
  • Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan, 650093, China
  • Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
  • Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan, 650093, China
  • Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan, 650093, China
  • Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming, Yunnan, 650093, China
  • National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan, 650093, China
  • Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
Bibliografia
  • [1] S. Virolainen, D. Ibana, E. Paatero, Hydrometallurgy 107, 56-61 (2011).
  • [2] B. B. Adhikari, M. Gurung, H. Kawakita, J. Incl. Phenom. Macro. 71, 479-487 (2011).
  • [3] B. B. Adhikari, M. Gurung, H. Kawakita, Analyst. 136 (21), 4570-4579 (2011).
  • [4] M. C. B. Fortes, J.S. Benedetto, Miner. Eng. 11 (5), 447-450 (1998).
  • [5] H. N. Kang, J-Y. Lee, J-Y. Kim, Hydrometallurgy 110, 120-127 (2011).
  • [6] S. V. Mahamuni, S.S. Kolekar, P.P. Wadgaonkara, J. Iran. Chem. Soc. 6 (1), 200-212 (2009).
  • [7] J. L. Ruan, Y.W. Guo, Q. Qiao, Procedia Environ. Sci. 16 (4), 545-551 (2012).
  • [8] H.-N. Kang, K.-Y. Kim, J.-Y. Kim, Green Chem. 15 (8), 2200-2207 (2013).
  • [9] P. D. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, S.Y. Wong, X. Zhang, Tetrahedron 33 (39), 4735-4757 (2002).
  • [10] J. H. Xu, G.S. Luo, G.G. Chen, B. Tan, J. Membr. Sci. 249 (1), 75-81 (2005).
  • [11] P. Löb, H. Pennemann, V. Hessel, Y. Men, Chem. Eng. Sci. 61 (9), 2959-2967 (2006).
  • [12] A. L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 63 (16), 4035-4044 (2008).
  • [13] M. N. Kashid, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 66 (17), 3876-3897 (2011).
  • [14] M. Darekar, N. Sen, K.K. Singh, Hydrometallurgy 144 (4), 54-62 (2014).
  • [15] K. K. Singh, A.U. Renjith, K.T. Shenoy. Chem. Eng. Process. 98, 95-105 (2015).
  • [16] M. Darekar, K.K. Singh, S. Mukhopadhyay, Sep. Purif. Technol. 158, 160-170 (2016).
  • [17] L. H. Zhang, J.H. Peng, S.H. Ju, L.B. Zhang, L.Q. Dai, N.S. Liu, Rsc. Adv. 4 (31), 16081-16086 (2014).
  • [18] A. L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 63 (16), 4035-4044 (2008).
  • [19] D. Doungdeethaveeratana, H.Y. Sohn ,Hydrometallurgy 49 (3), 229-254 (1998).
  • [20] K. S. Drese, Chem. Eng. J. 101, 403-407 (2004).
  • [21] P. Löb, H. Pennemann, V. Hessel, Y. Men, Chem. Eng. Sci. 61 (9), 2959-2967 (2006).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8d93063-5722-4c79-a726-4c4191c9cc32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.