PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enceladus as a place of origin of life in Solar System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enceladus, a satellite of Saturn, with its radius of 250 km, is the smallest geologically active celestial body in the Solar System. My model of core origin and evolution indicates that for hundreds of My after accretion Enceladus was an appropriate body for an origin of life. I continue consideration of the hypothesis that Enceladus was a cradle of life in the Solar System. I found that simple organisms could be ejected in icy grains into the space by volcanic jets or by meteoroid impacts. Several mechanisms could be responsible for later transport of the grains to the early Earth and other terrestrial planets. Eventually I suggest that Enceladus is the most appropriate body for a cradle of life in the Solar System.
Rocznik
Strony
172--180
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • University of Warsaw, Faculty of Physics, Institute of Geophysics, Pasteura 5, 02-093 Warszawa, Poland
Bibliografia
  • 1. Abramov, O., Mojzsis, S.J., 2011. Abodes for life in carbonaceous asteroids? Icarus, 213: 273-279.
  • 2. Arrhenius, S., 1908. Worlds in the Making: The Evolution of the Universe. New York, Harper & Row.
  • 3. Batygin, K., Brown, M.E., 2010. Early dynamical evolution of the Solar System: pinning down the initial conditions of the Nice Model. The Astrophysical Journal, 716: 1323-1331.
  • 4. Borg, L., Connelly, J.N., Nyquist, L.E., Shih Chi-Y., Wiesmann, H., Reese, Y., 1999. The age of the carbonates in Martian Meteorite ALH84001. Science, 286: 90-94.
  • 5. Brasier, M.D., 2012. Secret Chambers: The Inside Story of Cells and Complex Life. Oxford University Press.
  • 6. Brown, P., Pack, D., Edwards, W.N., Revelle, D.O., Yoo, B.B., Spalding, R.E., Tagliaferri, E., 2004. The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite. Meteoritics and Planetary Science, 39: 1781-1796.
  • 7. Bryce, C.C., Horneck, G., Rabbow, E., Edwards, H.G.M., Cockell, Ch.S., 2014. Impact shocked rocks as protective habitats on an anoxic early Earth. International Journal of Astrobiology, 14: 115-122.
  • 8. Campbell-Brown, M.D., Koschny, D., 2004. Model of the ablation of faint meteors. A&A, 418: 751-758.
  • 9. Clarke, A., 2014. The thermal limits to life on Earth. International Journal of Astrobiology, 13: 141-154.
  • 10. Ćuk, M., Dones, L., Nesvorný, D., 2016. Dynamical evidence fora late formation of Saturn's Moons. The Astrophysical Journal, 820, article ID 97: 1-16; doi: 10.3847/0004-637X/820/2/97
  • 11. Czechowski, L., 2014a. Some remarks on the early evolution of Enceladus. Planetary Space Science, 104: 185-199.
  • 12. Czechowski, L., 2014b. Enceladus: a cradle of life of the Solar System? Geophysical Research Abstracts, 16: EGU2014-9492-1.
  • 13. Czechowski, L., Losiak, A., 2016. Early thermal history of Rhea: the role of serpentinization and liquid state convection. Acta Geophysica, 64: 2677-2716.
  • 14. Di Giulio, M., 2010. Biological evidence against the panspermia theory. Journal of Theoretical Biology, 266: 569-572.
  • 15. Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O'Neil, J., Little, C.T.S., 2017. Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature, 543: 60-64.
  • 16. Dunham, W., 2017. Canadian bacteria-like fossils called oldest evidence of life. Reuters. Retrieved 1 March 2017, http://ca.reuters.com/article/topNews/idCAKBN16858B?sp=true
  • 17. Gladman, B., Coffey, J., 2008. Mercurian impact ejecta: meteorites and mantle. Asteroids, Comets, Meteors, 8289.pdf
  • 18. Góbi, S., Kereszturi, A., 2017. Role of serpentinization in the thermal and connected mineral evolution of planetesimals - evaluating possible consequences for exoplanetary systems. Monthly Notices of the Royal Astronomical Society, 466: 2099-2110.
  • 19. Guess, A.W., 1962. Poynting-Robertson effect for a spherical source of radiation. Astrophysical Journal, 135: 855-866.
  • 20. Hargitai, H., Kereszturi, A., eds., 2015. Encyclopedia of Planetary Landforms. Springer, New York, ISBN 1461431336.
  • 21. Hoyle, F., Wickramasinghe, C., 1978. Lifecloud - The Origin of Life in the Universe. Harper & Row. ISBN-10: 0060119543.
  • 22. Hsu, H.-W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horanyi, M., Juhasz, A., Altobelli, N., Suzuki, K., Masaki, Y., Kuwatani, T., Tachibana, S., Sirono, S.I., Moragas-Klostermeyer, G., Srama, R., 2015. Ongoing hydrothermal activities within Enceladus. Nature, 519: 207-210.
  • 23. Izawa, M.R.M., Banerjee, N.R., Flemming, R.L., 2010. Basaltic glass as a habitat for microbial life: implications for astrobiology and planetary exploration. Planetary Space Science, 58: 583-591.
  • 24. Kohler, S., 2015. Geysers from the Tiger Stripes of Enceladus. Astronomy Abstract Services, AAS Nova Highlight, 02 Oct 2015, id.336.
  • 25. Malamud, U., Prialnik, D., 2013. Modeling serpentinization: applied to the early evolution of Enceladus and Mimas. Icarus, 225: 763-774.
  • 26. McKay, C.P., 2016. Titan as the abode of life. Life, 6: 8; doi: 10.3390/life6010008; http://www.mdpi.com/2075-1729/6/1/ 8/htm, retrieved 24.Oct.2017.
  • 27. McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, Ch.R., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., Zare, R.N., 1996. Search for past life on Mars: possible relic biogenic activity in Martian Meteorite ALH84001. Science, 273: 924-930.
  • 28. Melosh, H.J., 2011. Planetary Surface Processes. Cambridge University Press.
  • 29. Mousis, O., Lunine, J.I., Waite, J.H. Jr., Magee, B., Lewis, W.S., Mandt, K.E., Marquer, D., Cordier, D., 2009. Formation conditions of Enceladus and origin of its methane reservoir. The Astrophysical Journal, 701: L39-L42.
  • 30. Nimmo, F., 2004. What is the young's modulus of ice? Europa's Icy Shell (2004) 7005 pdf; http://www.lpi.usra.edu/meetings/europa2004/pdf/7005.pdf
  • 31. Nitschke, W., Russell, M.J., 2010. Just Like the universe the emergence of life had high enthalpy and low entropy beginnings. Journal of Cosmology, 10: 3200-3216.
  • 32. O'Leary, M., 2008. Anaxagoras and the Origin of Panspermia Theory. Universe Publishing Group. ISBN 978-0-595-49596-2.
  • 33. Pabst, W., Gregorová, E., 2013. Elastic properties of silica polymorphs - a review. Ceramics - silikáty, 57: 167-184.
  • 34. Pater, de, I., Lissauer, J.J., 2001. Planetary Sciences. Cambridge University Press.
  • 35. Porco, C.C., Helfenstein, P., Thomas, P.C., Ingersoll, A.P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T.V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J.A., Del Genio, A.D., Dones, L., Murray, C.D., Squyres, S., 2006. Cassini observes the Active South Pole of Enceladus. Science, 311: 1393-1401.
  • 36. Romig, M.F., 1964. The physics of meteor entry. The RAND Corporation, Santa Monica, California. Retrieved 24 Oct. 2017, https://www.rand.org/content/dam/rand/pubs/papers/2008/P2902.pdf.
  • 37. Russell, M.J., Hall, A.J., Martin, W., 2010. Serpentinization as a source of energy at the origin of life. Geobiology, 8: 355-371.
  • 38. Schubert, G., Anderson, J.D., Travis, B.J., Palguta, J., 2007. Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus, 188: 345-355.
  • 39. Sharov, A.A., Gordon, R. 2013. Life Before Earth, arXiv:1304.3381 [physics.gen-ph]. https://arxiv.org/ftp/arxiv/papers/1304/1304.3381.pdf
  • 40. Steel, E.L., Davila, A., McKay, C.P., 2017. Abiotic and biotic formation of amino acids in the Enceladus Ocean. Astrobiology, 17: 862-875.
  • 41. Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáňez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V., 2015. Orbit and dynamic origin of the recently recovered Annama's H5 chondrite. Monthly Notices of the Royal Astronomical Society, 449: 2119-2127.
  • 42. Thomson, W., 1871. Presidential Address to the British Association for the Advancement of Science, assembled at Edinburgh, 1871, printed in London.
  • 43. Vickery, A.M., Melosh, H.J., 1987. The large crater origin of SNC Meteorites. Science, 237: 738-743.
  • 44. Wainwright, M., Wickramasinghe, N.C., Rose, C.E., Baker, A.J., 2014. Recovery of cometary microorganisms from the stratosphere. Journal of Astrobiology and Outreach, 2: 110; doi: 10.4172/2332-2519.1000110
  • 45. Waite, J.H. Jr., Lewis, W.S., Magee, B.A., Lunine, J.I., McKinnon, W.B., Glein, C.R., Mousis, O., Young, D.T., Brockwell, T., Westlake, J., Nguyen, M.-J., Teolis, B.D., Niemann, H.B., McNutt, R.L., Perry, M., Ip, W.-H., 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460: 487-490.
  • 46. Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., Martin, W.F., 2016. The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1, article number: 16116; doi: 10.1038/nmicrobiol.2016.116
  • 47. Yang, Y., Yokobori, S., Yamagishi, A., 2009. Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biological Sciences in Space, 23: 151-163.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8d1e0a6-85ac-45dc-ad9e-03a03302b865
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.