PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of binding peptides to class I Major Histocompatibility Complex using modified scoring matrices and data splitting strategies

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting peptides that can bind to MHC class I molecules is an important step in the vaccine design process. Computational approaches have potential to provide good predictive models that save both time and cost of the process. Position Specific Scoring Matrix (PSSM) is a reliable approach when dealing with amino acid sequences. PSSM formation involves carefully selecting its constructing data and parameters. In this work, we apply three different data splitting strategies and propose alternative values for the embedded PSSM parameters. The basic principle of data splitting is to choose train data that is able to represent the whole data. We propose using the Kennard–Stone algorithm to highlight the importance of choosing the data constituting the PSSM. Furthermore, this work proposes modifications to PSSM parameters and studies the model behavior in response to each change. The model is applied to experimental data for the Major Histocompatibility Complex of class I. Performance of modified parameters show either comparable or better results to conventional parameters. Moreover, Kennard–Stone data splitting algorithm contributed to significant model performance enhancement.
Twórcy
autor
  • Computer Department, Faculty of Engineering, Misr University for Science and Technology, Giza, Egypt
  • Department of Electronics and Communication, Faculty of Engineering, Fayoum University, Fayoum, Egypt
autor
  • Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] Arora N, Mazrou YA, Cravioto A, Cui F, Ferdinand E, Hinman A, et al. 2014 Assessment Report of the Global Vaccine Action Plan. World Health Organization; 2014.
  • [2] Lozano R. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380(9859):2095–128.
  • [3] Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2009;6(3):315–30.
  • [4] Lundegaard C, Hoof I, Lund O, Nielsen M. State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 2010;6 (Suppl. 2)(S3):1–14.
  • [5] Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 1999;17:51–88.
  • [6] Immune epitope database and analysis resource. National Institute for Allergy and Infectious Diseases (NIAID); 2006, 15 February. [Online]. Available: http://www.iedb.org/ [accessed 01.05.14].
  • [7] EL-Manzalawy Y, Honavar V. Qualitative versus quantitative approaches for predicting MHC-I peptides. Thesis: machine learning approaches for epitope prediction. Ames, Iowa: Iowa State University; 2008. p. 63–81.
  • [8] Reche PA, Glutting J-P, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 2002;63(9):701–9.
  • [9] Lundegaard C, Lund O, Buus S, Nielsen M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 2010;130:309–18.
  • [10] Rankpep: prediction of binding peptides to class I and class II MHC molecules. Universidad Complutense Madrid: Immunomedicine Group; 2007, January. [Online]. Available: http://imed.med.ucm.es/Tools/rankpep.html [accessed 20.01.15].
  • [11] Brusic V, Rudy G, Harrison LC. MHCPEP: a database of MHC-binding peptides. Nucleic Acids Res 1994;22(17):3663–5.
  • [12] Henikoff JG, Henikoff S. Using substitution probabilities to improve position-specific-scoring matrices. Comput Appl Biosci 1996;12:135–43.
  • [13] Henikoff S, Henikoff JG, Pietrokovski S. Blocks+: a non- redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 1999;15(6):471–9.
  • [14] Peters B, Bui H-H, Frankild S, Nielsen M, Lundegaard C, Kostem E, et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2006;2(6):0574–84.
  • [15] Reche PA, Zhang H, Glutting J-P, Reinherz EL. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 2005;21(9): 2140–1.
  • [16] Delves PJ. Human Leukocyte Antigen (HLA) System, The Merck Manual; 2014, December [Online]. Available: http://www.merckmanuals.com/professional/ immunology_allergic_disorders/biology_of_the_ immune_system/human_leukocyte_antigen_hla_system. html [accessed 21.01.15].
  • [17] Higgins JDTDG, Gibson TJ. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Bioinformatics 1994;19(1):19–29.
  • [18] Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2007;37:W202–8.
  • [19] Reche PA, Reinherz EL. Prediction of peptide – MHC binding using profiles. Methods Mol Biol 2007;409:185–200.
  • [20] Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 2008;9(1):8–21.
  • [21] Meydan C, Otu HH, Sezerman OU. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinform 2013;14(2):S2–13.
  • [22] Calis JJA, Maybeno M, Greenbaum JA, Weiskopf D, Silva ADD, Sette A, et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput Biol 2013;9(10):1–13.
  • [23] Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2007;2 (8):1–10.
  • [24] Rasmussen M, Harndahl M, Stryhn A, Boucherma R, Nielsen LL, Lemonnier FA, et al. Uncovering the peptide-binding specificities of HLA-C: a general strategy to determine the specificity of any MHC class I molecule. J Immunol 2014;193(10):4790–802.
  • [25] Borovicka Jr TMJ, Kordik P, Jirina M. Selecting representative data sets. Advances in data mining knowledge discovery and applications. InTech; 2012. p. 43–70.
  • [26] Borovicka T. Data splitting algorithms. ReviewTraining set construction methods. Czech Republic: Czech Technical University in Prague, Faculty of Information Technology; 2012. p. 13–4.
  • [27] Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969;11(1):137–48.
  • [28] Tung C-W, Ho S-Y. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 2007;23(8):942–9.
  • [29] Gribskov M, Mclachan AD, Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 1987;84:4355–8.
  • [30] Tatusov RL, Koonin E, Lipman D. A genomic perspective on protein families. Science 1997;278:631–7.
  • [31] Immune Epitope Database and Analysis Program: IEDB user documentation; 2012, 10 August [Online]. Available: http://www.iedb.org/doc/IEDB_Intro.pdf [accessed 15.11.14].
  • [32] AAindex. Kyoto University Bioinformatics Center; 2008, 31 March [Online]. Available: http://www.genome.jp/aaindex/ [accessed 18.11.14].
  • [33] Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 2008;36: D202–5.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8cf3b0b-a294-4230-8520-04c3c8320140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.