Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a non-invasive measurement method for simultaneous characterization of diameter and refractive index of transparent fibres. The method is based on scattering of a polychromatic beam of light by a side-illuminated fibre under study. Both quantities of interest are inversely calculated from the scattering far-field region in the vicinity of the primary rainbow. The results of practical measurements are examined with the use of a novel optical system for laboratory-level tests. An analysis of prediction errors for 20–120 μm thick fibres having various refractive indices helps to assess the outcome of the measurement data. The results show a clear route to improve the measurement process in on-line industrial process control.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 38 poz., rys., wykr., wzory
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Electronics, B. Prusa 53/55, 50-317 Wrocław, Poland
Bibliografia
- [1] Lin, H., Delbert, E.D., Stoffer, J.O. (1992). Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites. Polymer Engineering and Science, 32, 344–350.
- [2] Desimone, D., Dlouhy, I., Lee, W.E., Koch, D., Horvath, J., Boccaccini, A. (2010). Optically transparent oxide fibre-reinforced glass matrix composites. Journal of Non-Crystalline Solids, 356, 2591–2597.
- [3] Iba, H., Chang, T., Kagawa, Y. (2002). Optically transparent continuous glass fibre-reinforced epoxy matrix composite: fabrication, optical and mechanical properties. Composites Science and Technology, 62, 2043–2052.
- [4] Olson, J.R., Delbert, E.D., Stoffer, J.O. (1992). Fabrication and Mechanical Properties of an Optically Transparent Glass Fiber/PolymerMatrix Composite. Journal of Composite Materials, 26, 1181–1192.
- [5] Keaney, E., Shearer, J., Panwar, A., Mead, J. (2018). Refractive index matching for high light transmission composite systems. Journal of Composite Materials, 52, 3299–3307.
- [6] Onofri, F., Lenoble, A., Bultynck, H., Guéring, P.H. (2004). High-resolution laser diffractometry for the on-line sizing of small transparent fibres. Optics Communications, 234, 183–191.
- [7] Marshall, G.F. (2004). Handbook of Optical and Laser Scanning. New York: Marcel Dekker.
- [8] Mroczka, J. (2013). The cognitive process in metrology. Measurement, 46, 2896–2907.
- [9] Kisała, P., Harasim, D., Mroczka, J. (2016). Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating. Optics Express, 24, 29922–29929.
- [10] Cięszczyk, S., Kisała, P., Mroczka, J. (2019). New Parameters Extracted from Tilted Fiber Bragg Grating Spectra for the Determination of the Refractive Index and Cut-Off Wavelength. Sensors, 19, 1964.
- [11] Adam, J.A. (2002). The mathematical physics of rainbows and glories. Physics Reports, 356, 229–365.
- [12] Laven, P. (2003). Simulation of rainbows, coronas, and glories by use of Mie Theory. Applied Optics, 42, 436–444.
- [13] Adam, J.A., Laven, P. (2007). Rainbows from inhomogeneous transparent spheres: a ray-theoretic approach. Applied Optics, 46, 922–929.
- [14] Fleming, J.W. (1984). Dispersion in GeO2-SiO2 glasses. Applied Optics, 23, 4486–4493.
- [15] Kahnert, F.M. (2003). Numerical methods in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 79–80, 775–824.
- [16] Bohren, C.F., Huffman, D.R. (1983). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.
- [17] Aden, A.L. (1951). Electromagnetic Scattering from Spheres with Sizes Comparable to the Wavelength. Journal of Applied Physics, 22, 601–605.
- [18] Können, G.P., de Boer, J.H. (1979). Polarized rainbow. Applied Optics, 18, 1961–1965.
- [19] Świrniak, G., Mroczka, J. (2016). Approximate solution for optical measurements of the diameter and refractive index of a small and transparent fiber. Journal of the Optical Society of America A, 33, 667–676.
- [20] Ashkin, A., Dziedzic, J.M. (1981). Observation of optical resonances of dielectric spheres by light scattering. Applied Optics, 20, 1803–1814.
- [21] Chýlek, P., Kiehl, J.T., Ko, M.K.W. (1978). Narrow resonance structure in the Mie scattering characteristics. Applied Optics, 17, 3019–3021.
- [22] Bertero, M., De Mol, C., Viano, G. (1980). The stability of inverse problems [in:] Baltes H.P. (eds.) Inverse Scattering Problems in Optics. Topics in Current Physics, 20, Berlin: Springer.
- [23] Devaney, A.J., Sherman, G.C. (1982). Nonuniquenes. in Inverse Source and Scattering Problems. IEEE Transactions on Antennas and Propagation, 30, 1034–1037.
- [24] Mroczka, J., Szczuczyński, D. (2010). Improved regularized solution of the inverse problem in turbidimetric measurements. Applied Optics, 49, 4591–4603.
- [25] Mroczka, J., Szczuczyński, D. (2012). Simulation research on improved regularized solution of inverse problem in spectral extinction measurements. Applied Optics, 51, 1715–723.
- [26] Mroczka, J., Szczuczyński, D. (2013). Improved technique of retrieving particle size distribution from angular scattering measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 129, 48–59.
- [27] Onofri, F., Krzysiek, M., Barbosa, S., Messager, V., Ren, K.F., Mroczka, J. (2011). Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects. Applied Optics, 50, 5759–5769.
- [28] Onofri, F., Krzysiek, M.,Mroczka, J. (2007). Critical angle refractometry and sizing of bubble clouds. Optics Letters, 32, 2070–2072.
- [29] Airy, G.B. (1838). On the intensity of light in the neighbourhood of a caustic. Transactions of the Cambridge Philosophical Society, 6, University Press, 379.
- [30] Abramowitz, M., Stegun, I.A. (1970). Handbook of Mathematical Functions. 9th ed.Washington DC: National Bureau of Standards.
- [31] Nussenzveig, H.M. (1969). High-Frequency Scattering by a Transparent Sphere. II. Theory of the Rainbow and the Glory. Journal of Mathematical Physics, 10, 125–176.
- [32] Świrniak, G., Głomb, G. (2017). A tunable fiber-optic LED illumination system for non-invasive measurements of the characteristics of a transparent fiber. Proc. of SPIE, Modeling Aspects in Optical Metrology VI, 10330, 1033019.
- [33] Mroczka, J. (1988). Temperature stabilisation of light-emitting diode radiation. Journal of Physics E: Scientific Instruments, 21, 306–309.
- [34] Świrniak, G., Głomb, G. (2019). Experimental light scattering by optical fibers: system design and testing. Proc. of SPIE, Optical Measurement Systems for Industrial Inspection XI, 11056, 110563X–1.
- [35] Schubert, M.F., Chajed, S., Kim, J.K., Schubert, E.F. (2007). Polarization of light emission by 460nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Applied Physics Letters, 91, 051117–1.
- [36] Nussenzveig, H.M. (1992). Diffraction Effects in Semiclassical Scattering.MontrollMemorial Lecture Series in Mathematical Physics: 1. Cambridge: Cambridge University Press.
- [37] Berry, M.V., Upstill, C. (1980). Catastrophe optics: morphologies of caustics and their diffraction patterns. Progress in Optics, E. Wolf, ed. Amsterdam: Elsevier, 257–346.
- [38] Wang, R.T., van de Hulst, H.C. (1991). Rainbows: Mie computations and the Airy approximation. Applied Optics, 30, 106–117.
Uwagi
EN
1. This work was supported by the Polish Ministry of Science and Higher Education, Project No. 049U/0087/19.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8c9a9f7-671a-464d-9060-50f9d658723d