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Abstract 

The nonlinear vibrations of the partially tensioned slender column are presented in this paper. The considered 

system is subjected to Euler’s load, which direction of action is consistent with the non-deformed axis of the 
column. The magnitude of the external load is variable and its application point is located at different heights 

between the upper and lower supports. In addition, the longitudinal displacement and rotation of both of the 

system ends are limited by the discrete elements in the form of translational and rotational springs. This 
nonlinear system is based on the screw drive used in the vertical lift platform for disabled people or cargo lift 

equipped with an engine room located in the lower part of the frame. The boundary problem of free vibrations 

of the mentioned system has been formulated on the basis of Bernoulli – Euler theory and due to nonlinear 
expressions the solution of the problem was conducted with small parameter method. The results of numerical 

simulations are concern on linear and nonlinear component of vibrations in relation to the location of external 

load application and influence of asymmetric value of supports stiffness on the free vibration frequency. 
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1. Introduction 

Columns and beams are widely used as load-bearing or driving elements in mechanical 

engineering. Slender elements are increasingly used in construction to reduce production 

costs or perform specific functions. Therefore, the issue of free vibrations and stability is 

very important for scientific considerations. Particular attention should be paid to 

geometrically nonlinear systems in which the nonlinear theory and the theory of 

Bernoulli–Euler are used to formulate the boundary problem [1, 2]. Slender columns 

loaded with compressive forces usually form responsible support structures that can be 

exposed to dangerous resonance vibrations causing damage to the system. External loads 

can be classified into non-conservative [3] and conservative loads, which include Euler's 

force [4]. The load direction is consistent with the non-deformed axis of the system 

when tilting the system from the static equilibrium position. Interesting results of 

numerical simulations showing the impact of changes in cross-section and structure 

geometry on free vibrations of a non-prismatic column subjected to the active and 

passive follower force directed towards the positive pole are presented in [5]. In addition 



Vibrations in Physical Systems 2019, 30, 2019217 (2 of 8) 

to geometrical parameters and the type of system load, the use of discrete elements at 

supporting points has a significant impact on the system's behaviour during vibrations  

[4, 6, 8, 9] and critical force [7]. Partially tensioned columns including rotational and 

translational springs [8, 9] model the screw drive used in vertical platform lifts equipped 

with a machine room located in the lower part of the frame. Studies on slender partial 

tension systems have shown a significant effect of amplitude and susceptible elements to 

natural vibration frequency that can be controlled. This work concerns the numerical 

research on the mentioned systems regarding free vibration (linear and nonlinear 

component) at different locations of external load application, taking into account the 

asymmetry of the value of support stiffness. 

2. Boundary value problem concerning free vibrations 

The considered system is shown in Fig. 1. It is a column resiliently mounted at both ends 

(longitudinal (K0, K1) and rotational (C0, C1) elasticity limiting the rotation of the column 

ends were taken into account) and loaded with a force whose direction coincides with  

the non-deformed axis of the system. The system loading force occurs between the ends 

of the column. The position of the loading force was determined by the parameter  

 ( = l1/l). The part of the column situated above the load application point is tensioned 

while the part below this point is compressed. To develop the mathematical model,  

the column was divided into two parts. 

 

Figure 1. Physical model of considered column 

The division point coincides with the point determining the position of the loading 

force. The lower (compressed) part is marked by index 1. The upper (tensioned) part is 
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marked by index 2. Bending and longitudinal stiffness and mass per unit length of rods 

marked with indexes 1 and 2 are the same ((EJ)1 = (EJ)2 = (EJ), (EA)1 = (EA)2 = (EA), 

(A)1 = (A)2 = (A) (where: Ei – Young’s modulus of column material, i – density of 

column material, Ai – cross-section area, Ji – geometrical axial moment of inertia of  

the cross-section of i-th element of the structure).  

The paper does not present in detail the boundary problem, which was formulated on 

the basis of the Hamilton principle and due to the occurrence of nonlinearity the small 

parameter method was taken into account (comp. [10]). Differential equations of motion 

in the transverse and longitudinal directions are as follows: 
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All nonlinear quantities describing the behavior of the system during vibrations were 

expanded into power series of a small parameter of amplitude. The dynamic properties 

of the column under consideration depend on the vibration amplitude. The following 

extensions of nonlinear components of equations into power series of the small 

parameter of vibration amplitude  were used: 
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In the expansions of formulas (3-7) wi(i,), ui(i,), ki() and i are dimensionless 

quantities, referred to the stiffness and length of each bars, related to transversal  

and longitudinal displacement, internal force and natural vibration frequency.  

All dependencies presented in the work were written using the following dimensionless 

quantities: 
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Where: Wi(xi,t), Ui(xi,t) and Si(t) – dimensional quantities respectively transversal  

and longitudinal displacements and internal force. 

The next components of nonlinear quantities are marked with the indices 0, 1, 2, .... 

For example, 0 – linear component of natural vibration frequency, 2 – nonlinear 

component of natural vibration frequency. The natural frequency, which is calculated 

using both linear 0 and nonlinear 2 components is calculated on the basis of the 

presented expansion into power series of small parameter (7) from the formula: 

2 2 2
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The method of calculating the individual components of the quantities that are 

necessary to determine the natural frequency  is as follows (see [10]): 

– the distribution of external force into the bars of the column (linear component of 

internal forces): 
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– the linear component of the natural vibration frequency 0 is determined from  

the transcendental equation obtained after taking into account the solutions of 

differential equations associated with 0 in appropriate boundary conditions. 

– nonlinear components of internal forces: 
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– nonlinear components of free vibration frequency: 
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(26) 

All quantities presented in this chapter (linear and nonlinear components defined by 

formulas (20-26)) are taken into account for presenting the results of numerical 

calculations. 

3. Results of numerical simulations  

Results of numerical simulations of free vibrations frequency of the considered partially 

tensioned slender system were presented in non-dimensional form, defined as: 
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Figure 2. The relationship between natural vibration frequency Ω and the rotational 

springs stiffness c0 and c1, at different points of external load application ζ taking into 

account the parameters: k0 = k1 = k; c0 = 0;  = 30 
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The amplitude of vibrations in numerical calculations is assumed as a double radius 

of gyration. Figures 2, 3, 4 show the relationship between the parameter of the first 

natural vibration frequency  and the point of external load application for different 

values of rotational spring stiffness limiting the rotation of the column ends. The 

assumed values of rotational spring stiffness are for the lower fastening c0 = 0, 15, 30 

and the upper c1 = 0, 2, 4, 6, 8, 12, 18, 30. The value of the load parameter is constant  

 = 30, while the point of its application moves along the length of the system ζ  (0,1). 

The same stiffness of the translation springs at both attachment points k0 = k1 = 2106) 

was assumed. Based on the numerical simulations performed, it has been observed  

that as the stiffness of both the lower and upper fastening increases, the natural  

vibration frequency increases (frequency containing both linear and nonlinear 

components – formula (20)).  

The natural vibration frequency is strongly dependent on the position of the loading 

force. The difference between the highest and the lowest value of the natural vibration 

frequency from the factor  variation range depends on the stiffness of the rotational 

springs. With the rotational rigidity of the lower fastening c0 = 0 (Figure 2) at c1 = 30, 

the difference between the largest value and the smallest is about 35% of the value of the 

highest frequency from the considered factor .  

 

 

Figure 3. The relationship between natural vibration frequency Ω and the rotational 

springs stiffness c0 and c1, at different points of external load application ζ taking into 

account the parameters: k0 = k1 = k; c0 = 15;  = 30 

When the rotational rigidity of the lower attachment increases c0 = 30, the difference 

considered is only about 15%. It was also observed that the highest value of the natural 

frequency (for bigger value of parameter c1) occurs when the force loading the column is 

near the lower fastening. Depending on the rotational stiffness values, two or one local 

minimum and maximum of the considered curves are obtained. 
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Figure 4. The relationship between natural vibration frequency Ω and the rotational 

springs stiffness c0 and c1, at different points of external load application ζ taking into 

account the parameters: k0 = k1 = k; c0 = 30;  = 30 

4. Conclusions  

In this paper, the boundary problem of free vibrations of partially tensioned columns 

subjected to Euler’s load was considered. The discussion includes both the linear 

component of the first vibration frequency and its nonlinear component, whose impact 

on the frequency depends on the vibration amplitude. The effect of asymmetry of the 

system mounting rigidity on its dynamic properties was analyzed. The considerations 

took into account the asymmetry in rotational stiffness limiting the rotation of both ends 

of the column. Based on the numerical tests carried out, it was shown that the considered 

natural vibration frequency is strongly dependent on the parameters of rotational 

stiffness. In addition, the frequency of free vibrations depends on other parameters such 

as location of external force, load magnitude, translational springs stiffness and physical 

and geometrical properties of the system. In the future, it is planned to study the effect of 

circular-shaped heads on free vibrations to prevent resonance in screw-driven platform 

lifts. 
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