PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article concerns the development of completely new groups of composite materials that can be used to produce functional replacements for damaged bones or teeth. Design/methodology/approach: A selective laser sintering was used to produce the reinforcement of those materials from titanium and its Ti6Al4V alloy in the form of skeletons with pores with adjustable geometric features. The matrix of those materials is either air or crystallised from the liquid AlSi12 or AlSi7Mg0.3 alloys condition after prior vacuum infiltration or human osteoblast cells from the hFOB 1.19 (Human ATCC - CRL - 11372) culture line. Findings: The porous material may be used for the non-biodegradable scaffold. After implantation into the body in the form of an implant-scaffold one, it allows the natural cells of the patient to grow into the pores of the implant, and it fuses with the bone or the appropriate tissue over time. The essential part of the implant-scaffold is the porous part inseparably connected with the core of solid materials. Into pores can grow living cells. Research limitations/implications: Biological-engineering composite materials in which natural cells were cultured in the pores in the laboratory next are combined as an artificial material with the natural cells of the patient in his/her body. Practical implications: The hybrid technologies of the all group of those materials were obtained and optimised. Numerous structure research was carried out using the most modern research methods of contemporary materials engineering, and mechanical tests and biological research involving the cultivation of natural cells were realised. Originality/value: The results of the research indicate the accuracy of the idea of implementing a new group of biological-engineering materials and the wide possibilities of their application in regenerative medicine.
Rocznik
Strony
53--85
Opis fizyczny
Bibliogr. 90 poz.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • Institute of Machine Design and Machinery Operations, Faculty of Mechanical Engineering, The University of Zielona Gora, ul. Prof. Szafrana 4, 65-246 Zielona Góra, Poland
autor
  • Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Mechanical Engineering Faculty, Silesian University of Technology, ul. Konarskiego 18 A, 44-100 Gliwice, Poland
autor
  • Chair of Lightweight Structures and Plastics Processing, Mechanical Engineering Faculty, University of Technology, Reichenhainer Straße 31/33, D-09126 Chemnitz, Germany
Bibliografia
  • [1] P.E. Petersen, Changing oral health profiles of children in Central and Eastern Europe - Challenges for the 21st century, WHO Global Oral Health, Geneva, Switzerland, 2003.
  • [2] A. Wójcicka, M. Zalewska, E. Czerech, R. Jabłoński, S.Z. Grabowska, E. Maciorkowska, Caries of developmental age as civilization disease, Epidemiological Review 66/4 (2012) 705-711 (in Polish).
  • [3] B. Pawka, P. Dreher, J. Herda, I. Szwiec, M. Krasicka, Tooth decay in children, a social problem, Problems of Hygiene and Epidemiology 91/1 (2010) 5-7 (in Polish).
  • [4] A. Bromblik, M. Wierzbicka, F. Szatko, Impact of environmental conditions on the incidence and course of dental caries in children, Stomatologic Journal 63/5 (2010) 301-309 (in Polish).
  • [5] E. Krzywiec, M. Zalewska, A. Wójcicka, R. Jabłoński, B.J. Olejnik, S.Z. Grabowska, J. Jamiołkowski, E. Czerech, A. Łuszcz, A. Stepek, E. Maciorkowska, Selected nutritional behavior and the occurrence of tooth decay in adolescents, Epidemiological Review 66/4 (2012) 713-721 (in Polish).
  • [6] J.A. Aas, A.L. Griffen, S.R. Dardis, A.M. Lee, I. Olsen, F.E. Dewhirst, E.J. Leys, B.J. Paster, Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults, Journal of Clinical Microbiology 46/4 (2008) 1407-1417, doi: 10.1128/JCM. 01410-07.
  • [7] D.A. Spratt, J. Pratten, M. Wilson, K. Gulabivala, An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates, International Endodontic Journal 34 (2001) 300-307.
  • [8] R. Salehrabi, I. Rotstein, Endodontic treatment outcomes in a large patient population in the USA: An epidemiological study, Journal of Endodontics 30/12 (2004) 846-850.
  • [9] M.P. Lazarski, W.A. Walker, C.M. Flores, W.G. Schindler, K.M. Hargreaves, Epidemiological evaluation of the outcomes of nonsurgical root canal treatment in a large cohort of insured dental patients, Journal of Endodontics 27 (2001) 791-796, doi: 10.1097/00004770¬20011 2000-00021.
  • [10] R. Meuwissen, S. Eschen, Twenty years of endodontic treatment, Journal of Endodontics 9/9 (1983) 390-393.
  • [11] S.C. Chen, L.H. Chuech, C.K. Hsiao, M.Y. Tsai, S.C. Ho, C.P. Chiang, An epidemiologic study of tooth retention after nonsurgical endodontic treatment in a large population in Taiwan, Journal of Endodontics 33/3 (2007) 226-229.
  • [12] M. Morita, T. Kimura, M. Kanegae, A. Ishikawa, T. Watanobe, Reasons for extraction of permanent teeth in Japan, Community Dentistry and Oral Epidemiology 22/5 (1994) 303-306, doi: 10.UU/j.1600-0528.1994. tb02056.x.
  • [13] A.C.B. Hollandra, A.H.G. de Alencar, C.R.A. de Estrela, M.R. Bueno, C. Estrela, Prevalance of Endodontically Trale Teeth in a Brazilian Adult Population, Brazilian Dental Journal 19/4 (2008) 313-317.
  • [14] I.F. Angelillo, C.G.A. Nobile, M. Pavia, Survey of reasons for extraction of permanent teeth in Italy, Community Dentistry and Oral Epidemiology 24/5 (1996) 336-340.
  • [15] I.G. Chestnutt, V.I. Binnie, M.M. Taylor, Reason for tooth extraction in Scotland, Journal of Dentistry 28/4 (2000) 295-297.
  • [16] A.F. Caldas Jr., Reason for tooth extraction in a Brazilian population, International Dental Journal 50/5 (2000) 267¬273.
  • [17] K.F. Al-Shammari, J.M. Al-Arsari, M.A. Al-Melh, A.K. Al-Khabhaz, Reasons for tooth extraction in Kuwait, Medical Principles and Practice 15/6 (2006) 417-422.
  • [18] P.-I. Branemark, R. Adell, U. Breine, B.O. Hansson, J. Lindstrom, A. Ohlsson, Intraosseous anchorage of dental prosthesis. I Experimental studies, Scandinavian Journal of Plastic and Reconstructive Surgery 3/2 (1969) 81-100, doi: 10.3109/02844316909036699.
  • [19] P.-I. Branemark, B.O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, A. Ohman, Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period, Scandinavian Journal of Plastic and Reconstructive Surgery, Suppl 16 (1977) 1-132.
  • [20] P.-I. Brânemark, B.O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallen, A. Ohman, Osseointegrated implants in the treatment of the edentulous jaw, Almqvist and Wiksell, Stockholm, Sweden, 1977.
  • [21] A. Schroeder, E. van der Zypen, H. Stich, F. Sutter, The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces, Journal of Maxillofacial Surgery 9/1 (1981) 15-25.
  • [22] K. Donath, G. Breuner, A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique, Journal of Oral Pathology & Medicine 11/4 (1982) 318-326.
  • [23] P.-I. Brânemark, Osseointegration and its experimental studies, Journal of Prosthetic Dentistry 50 (1983) 399¬410.
  • [24] R. Adell, B. Ericksson, U. Kekholm, P.-I. Branemark, T. Jemt, Long-term follow-up study of osseointegrated implants in the treatment of totally endentulous jaws, International Journal of Oral & Maxillofacial Implants 5/4 (1990) 347-359.
  • [25] P. Worthington, Current status of osseointegration, in: B. Rydevik, P.-I. Brânemark, R. Skalak (Eds.), International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, The Institute for Applied Biotechnology, Göteborg, Sweden, 1991, 17-20.
  • [26] R. Skalak, Overview of previous development and biomechanics of osseointegration, in: B. Rydevik, P.-I. Brânemark, R. Skalak (Eds.), International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, The Institute for Applied Biotechnology, Göteborg, Sweden, 1991.
  • [27] L.-M. Bjursten, The bone-implant interface in osseo-integration, in: B. Rydevik, P.-I.Brânemark, R. Skalak (Eds.), International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, The Institute for Applied Biotechnology, Göteborg, Sweden, 1991,25-31.
  • [28] K. Donath, M. Laass, H.J. Günzl, The histopatology of different foreign-body reactions in oral soft tissue and bone tissue, Virchows Archiv. A, Pathological Anatomy and Histopathology 420/2 (1992) 131-137.
  • [29] P.-I. Brânemark, Osseointegration in orthopaedic surgery, Proceedings of First World Congress of Osseointegration, Venice, Italy, 1994, 17-18.
  • [30] P.-I. Brânemark, B.L. Rydevik, R. Skalak (Eds.), Osseo-integration in skeletal reconstruction and joint replacement, Quintessence Publishing Co., Carol Stream, IL, 1997.
  • [31] R. Skalak, Biomechanics of osseointegration, in: P.-I. Brânemark, B.L. Rydevik, R. Skalak (Eds.), Osseointe¬gration in skeletal reconstruction and joint replacement, Quintessence Publishing Co., Carol Stream, IL, 1997, 45-56.
  • [32] A.N. Cranin, J.E. Lemons, 7.8. Dental implantation, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine, Second Edition, Elsevier Academic Press, Amsterdam, 1997, 555-573.
  • [33] M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology, European Journal of Oral Sciences 106/1 (1998) 527-551.
  • [34] E. Williams, B. Rydevik, P.-I. Branemark (Eds.), Osseointegration from molecule to man, Institute for Applied Biotechnology, Proceedings of Interdisciplinary Conference, Goteborg, Sweden, 1999.
  • [35] P.J. Henry, Osseointegration in dentistry, Proceedings of Interdisciplinary Conference on Osseointegration from molecule to man, Goteborg, Sweden, 1999, 2-12.
  • [36] R. Branemark, P.-I.. Branemark, B. Rydevik, R.R. Myers, Osseointegration in skeletal reconstruction and rehabilitation: A review, Journal of Rehabilitation Research and Development 38/2 (2001) 175-181.
  • [37] J. Nowacki, L.A. Dobrzański, F. Gustavo, Intramedullary implants in osteosynthesis of long bones, Open Access Library 11 (2012) 1-150 (in Polish).
  • [38] D.F. Wiliams (Ed.), Definitions in Biomaterials, Elsevier, Amsterdam - Oxford - New York - Tokyo, 1987.
  • [39] L.A. Dobrzański, Engineering materials and material design. Basics of materials science and metallurgy, Second Edition revised and supplemented, WNT, Warszawa, 2006 (in Polish).
  • [40] L.A. Dobrzański, Metals and Alloys, Open Access Library, Annal VII(2) 2017, 1-982 (in Polish).
  • [41] R. Langer, J.P. Vacanti, Tissue engineering, Science 260/5110 (1993) 920-926.
  • [42] R.P. Lanza, R. Langer, J. Vacanti (Eds.), Principles of Tissue Engineering, Academic Press, San Diego, 2000.
  • [43] Y.C. Fung, A Proposal to the National Science Foundation for An Engineering Research Center at UCSD. Center for the Engineering of Living Tissues, UCSD #865023,2001.
  • [44] A. Atala, R.P. Lanza (Eds.), Methods of Tissue Engineering, Academic Press, San Diego, 2002.
  • [45] J. Viola, B. Lai, O. Grad, The Emergence of Tissue Engineering as a Research Field, The National Science Foundation, Arlington, USA, 2003.
  • [46] F. Yang, W.L. Neeley, M.J. Moore, J.M. Karp, A. Shukla, R. Langer, Tissue Engineering: The Therapeutic Strategy of the Twenty-First Century, in: C.T. Laurencin, L.S. Nair (Eds.), Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL, 2008, 3-32.
  • [47] A. Atala, R. Lanza, J.A. Thomson, R. Nerem (Eds.), Principles of regenerative medicine, Second Edition, Academic Press, San Diego, 2011.
  • [48] Regenerative Medicine 2006, Report, US National Institutes of Health, 2006, http://stemcells.nih.gov/ staticre source s/info/scireport/P DFs/Regenerative_Medici ne_2006.pdf, Access: 31.05.2016.
  • [49] Biomaterials Market for Implantable Devices (Material Type - Metals, Polymers, Ceramics and Natural, Applications - Cardiology, Orthopedics, Dental, Ophthalmology and Others) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013-2019, Transparency Market Research, 2014,
  • http://www.transparencymarketresearch.com/biomaterial s-market.html.
  • [50] Orthopedic Devices Market (Hip, Knee, Spine, Shoulder, Elbow, Foot and Ankle, Craniomaxillofacial and Other Extremities) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013-2019, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/ orthopedic-devices-market.html.
  • [51] Orthopedic Trauma Fixation Devices Market - Global Forecast, Market Share, Size, Growth and Industry Analysis 2014-2020, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/ orthopedic-trauma-fixation-devicemarket.
  • [52] Orthopedic Soft Tissue Repair Market (Surgical Procedures - ACL/PCL Reconstruction, Meniscal Repair, Rotator Cuff Repair, Hip Arthroscopy, Biceps Tenodesis and Shoulder Labrum Repair) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013-2019, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/ soft- tissue-repair-sports-medicine.html.
  • [53] 3D Printing in Medical Applications Market (Medical Implants (Dental, Orthopedic, Cranio-maxillofacial), Surgical Guides, Surgical Instruments, Bio-engineered Products) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013-2019, Transparency Market Research, 2014, http://www transparencymarketresearch.com/3d- Printing-medical-applications.html.
  • [54] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library VII(l) 2017, 1¬580 (in Polish).
  • [55] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, M. Szindler, L.B. Dobrzański, A. Achtelik-Franczak, E. Hajduczek, Microporous Titanium-Based Materials Coated by Biocompatible Thin Films, in L.A. Dobrzański (Ed.) Biomaterials in Regenerative Medicine, InTech, Rijeka, 2018, 65-109, DOI: 10.5772/66233.
  • [56] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz A. Achtelik-Franczak, M. Szindler, Structure and properties of the skeleton microporous materials with coatings inside the pores for medical and dental applications, in: M. Muruganant et al. (Eds.), Frontiers in Materials Processing, Applications, Research and Technology, Springer Nature Singapore Pte Ltd., 2018, 297-320, doi: 10.1007/978-981-10-4819-7 26.
  • [57] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B.Dobrzański, M. Szindler, T.G. Gaweł, Porous Selective Laser Melted Ti and Ti6A14V Materials for Medical Applications, in: L.A. Dobrzański (Ed.). Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, 2017, 161 181, doi: doi.org/10.5772/65375.
  • [58] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, The new generation of the biological-engineering materials for applications in medical and dental implant- scaffolds, prepared for printing.
  • [59] B.V. Venkatarman, S. Sudha, Vanadium toxicity, Asian Journal of Experimental Sciences 19/2 (2005) 127-134.
  • [60] H.A. Ngwa, A. Kanthasamy, V. Anantharam, C. Song, T. Witte, R. Houk, A.G. Kanthasamy, Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson’s disease, Toxicology and Applied Pharmacology 240/2 (2009) 273-285, doi: 10.1016/j.taap.2009.07.025.
  • [61] Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al, Materials Science and Engineering A 213 (1966) 138-147.
  • [62] M. Walkowiak-Przybyło, L. Klimek, W. Okrój, W. Jaku-bowski, M. Chwilka, A. Czajka, B. Walkowiak, Adhesion, activation, and aggregation of blond plateles and biofilm formation on the surfaces of titanium alloys Ti6A14V and Ti6A17Nb, Journal of Biomedical Materials Research Part A 100/3 (2012) 768-775, doi: 10.1002/jbm.a.34006.
  • [63] W. Okrój, L. Klimek, P. Komorowski, B. Walkowiak, Platelets in contact with titanium alloy Ti6A14V and its modified surfaces, Engineering Biomaterials 8/43-44 (2005) 13-16 (in Polish).
  • [64] J.T. Tuomi, R.V. Bjorkstrand, M.L. Pemu, M.V. Salmi, E.I. Huotilainen, J.E. Wolff, P.K. Vallittu, A.A. Makitie, In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials, Journal of Materials Science. Materials in Medicine 28 (2017) 53, doi.org/10.1007/sl0856-017-5863-l.
  • [65] B.R. Chrcanovic, J. Kisch, T. Albrektsson, A. Wennerberg, Factors influencing the fracture of dental implants, Clinical Implant Dentistry and Related Research 20 (2018) 58-67, doi: 10.1111/cid. 12572.
  • [66] A. Scribante, M.A. Montasser, E.S. Radwan, L. Bemardinelli, R. Alcozer, P. Gandini, M.F. Sfondrini, Reliability of Orthodontic Miniscrews: Bending and Maximum Load of Different Ti-6A1-4V Titanium and Stainless Steel Temporary Anchorage Devices (TADs), Materials (Basel) 11/7 (2018) El 138, doi: 10.3390/mall071138.
  • [67] M.H. Albogha, Y. Mori, I. Takahashi, Three-dimensional titanium miniplates for fixation of subcondylar mandibular fractures: Comparison of five designs using patient-specific finite element analysis, Journal of Cranio-Maxillofacial Surgery 46/3 (2018) 391-397, doi: doi.org/10.1016/j.jcms. 2017.12.020.
  • [68] Y. Tanaka, K. Kurashima, H. Saito, A. Nagai, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa, In vitro short¬term platelet adhesion on various metals, Journal of Artificial Organs 12/3 (2009) 182-186.
  • [69] L.G. Harris, D.O. Meredith, L. Eschbach, R.G. Richards, Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials, Journal of Materials Science: Materials in Medicine 18/6 (2007) 1151-1156, doi: 10.1007/sl0856-007-0143-0.150.
  • [70] V. Oliveira, R.R. Chaves, R. Bertazzoli, R. Caram, Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants, Brazilian Journal of Chemical Engineering 15/4 (1998), doi: 10.1590/S0104-66321998000400002.
  • [71] N.A. Al-Mobarak, A.A. Al-Swayih, F.A. Al-Rashoud, Corrosion Behavior of Ti-6Al-7Nb Alloy in Biological Solution for Dentistry Applications, International Journal of Electro-chemical Science 6 (2011) 2031-2042.
  • [72] R. Dąbrowski, J. Pacyna, J. Kochahczyk, Shaping the microstructure and crack resistance of the Ti-6Al-7Nb alloy, Acta Bio-Optica et Informática Medica - Biomedical Engineering 22/3 (2016) 130-137 (in Polish).
  • [73] C.J. Boehlert, C.J. Cowen, J.P. Quast, T. Akahori, M. Niinomi, Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications, Materials Science and Engineering C 28/3 (2008) 323-330, doi: 10.1016/j.msec.2007.04.003.
  • [74] Y. Xin, T. Hu, P. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomaterialia 7 (2011) 1452-1459.
  • [75] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Periimplant bone remodelling, Journal of Biomedical Materials Research Part A 81/3 (2007) 757-765.
  • [76] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [77] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51/3 (2013) 245-256.
  • [78] C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Cheah, Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol=hydroxyapatite biocomposite for craniofacial and joint defects, Journal of Materials Science. Materials in Medicine 15/10 (2004) 1113-1121.
  • [79] J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26/23 (2005) 4817-4827.
  • [80] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-Medical Materials and Engineering 15/1-2 (2005) 113-124.
  • [81] F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Poly-epsilon- caprolactone=hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta Biomaterialia 3/1 (2007) 1-12.
  • [82] C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, S. Peng, Structure and properties of nanohydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system, Nanotechnology 22/28 (2011) 285703.
  • [83] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Implant-bone skeleton, Patent PL 229149 dated 29/06/2018, News of the Patent Office 6 (2018) (in Polish).
  • [84] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Implant-scaffold or prosthesis of anatomical elements of the stomatognathic and facial system, Patent PL 229148 dated 29/06/2018, News of the Patent Office 6(2018) (in Polish).
  • [85] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, Biological and engineering composites for regenerative medicine, Patent Application P 414723 dated 9/11/2015, Bulletin of the Patent Office 45/11 (2017) 5 (in Polish).
  • [86] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik, Composite made using computer-assisted laser methods for craniofacial implants and the method of its production, Patent Application P 411689 dated 23/3/2015, Bulletin of the Patent Office 44/20 (2016) 6 (in Polish).
  • [87] L.A. Dobrzański (Ed.), Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library V(3) 2015, 1-168.
  • [88] A.D. Dobrzańska-Danikiewicz, Book of critical technologies shaping the structure and properties of the surface of engineering materials, Open Access Library 8 (2013) 1-823 (in Polish).
  • [89] A.D. Dobrzańska-Danikiewicz, Methodology of computer-integrated prediction of development of surface materials engineering, Open Access Library 1/7 (2012) 1-289 (in Polish).
  • [90] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. AchtelikFranczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biological-engineering materials for applications in medical and dental implant-scaffolds, Archives of Materials Science and Engineering 91/2 (2018) 56-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8c2c1dd-66c0-455d-b576-249c3b4eb6fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.