PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Importance of seismic wave frequency in FEM-based dynamic stress and displacement calculations of the earth slope

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliable assessment of earthen dams' stability and tailing storage facilities widely used in the mining industry is challenging, particularly under seismic load conditions. In this paper, we propose to take into account the effect of the dominant frequency of seismic load on the stability assessment of tailing/earthen dams. The calculations are performed by finite element modelling (FEM) with the Mohr–Coulomb failure criteria. To separate the frequency content from other dynamic parameters describing the seismic wave, synthetic waveforms with identical amplitude and attenuation characteristics, but differing spectral characteristics have been used. The analysis has been performed for three different slope angles and two scenarios of seismic wave propagation. Consequently, the changes of total displacement and shear stresses depending on the frequencies have been determined and clearly show that lower frequencies cause higher stress levels and displacement. Finally, the response surface methodology has been applied to determine how different parameters affect the slope stability under dynamic load conditions. Overall, this study is a first step to improve the existing methods to assess slope stability when considering seismic load.
Wydawca
Rocznik
Strony
82--96
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • KGHM CUPRUM Ltd. Research and Development Centre, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
  • AGH University of Science and Technology, Kraków, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics, Adama Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Technical University Bergakademie Freiberg, Institute of Geophysics and Geoinformatics, Gustav-Zeuner-Str. 12, 09599 Freiberg, Germany
  • Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12203 Berlin, Germany
  • KGHM CUPRUM Ltd. Research and Development Centre, 2-8 Sikorskiego Street, 53-659 Wrocław, Poland
Bibliografia
  • [1] Adiansyah, J.S., Rosano, M., Vink, S., Keir, G., 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Clean. Prod. 108, 1050–1062. https://doi.org/10.1016/j.jclepro.2015.07.139.
  • [2] Owen, J.R., Kemp, D., Lèbre, É., Svobodova, K., Pérez Murillo G. 2020. Catastrophic tailings dam failures and disaster risk disclosure International Journal of Disaster Risk Reduction, 42, 1–10. https://doi.org/10.1016/j.ijdrr.2019.101361.
  • [3] Duque, M.J.F., Zapico, I., Oyarzun, R., Lopez Garcia, J.A., Cubas, P. 2015. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: new insights and environmental implications from SE Spain. Geomorphology. 239, 1–16 https://doi.org/10.1016/j.
  • [4] Schoenberg, E. 2016. Environmentally sustainable mining: the case of tailings storage facilities. Resour. Policy. 49, 119–128, https://doi.org/10.1016/j.resourpol.2016.04.009.
  • [5] Gobla, M. 2017. Risk analysis for evaluation of mine impounded water. Annu. Conf. Expo: Soc. Min., Metall. Explor. 1, 561–564.
  • [6] International Commission On Large Dams, The World Register of Dams, https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (accessed 1 March 2021).
  • [7] Azam, S., Li, Q. 2010. Tailings dam failures: a review of the last one hundred years, Geotechnical News, 50–53, online: http://ksmproject.com/wp-content/uploads/2017/08/Tailings-Dam-Failures-Last-100-years-Azam2010.pdf
  • [8] Chambers, D.M. Higman B. 2011. Long-term Risk of Tailings Dam Failure. online: http://www.csp2.org/technical-reports (accessed 1 March 2021).
  • [9] Pytel, W. 2010. Current practice in tailings ponds risk assessment. Cuprum. 2(55), 5–41.
  • [10] Rico, M., Benito, G., Salgueiro, A.R., Díez-Herrero, A., Pereira H.G. 2008. Reported tailings dam failures. A review of the European incidents in the worldwide context. J. Hazard Mater. 152(2), 846–852, https://doi.org/10.1016/j.jhazmat.2007.07.050.
  • [11] Glotov, V.E., Chlachula, J., Glotova, L.P., Little, E. 2018. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 245, 236–247, https://doi.org/10.1016/j.enggeo.2018.08.012.
  • [12] Turi, D., Pusztai, J., Nyari, I. 2013. Causes and Circumstances of Red Mud Reservoir Dam Failure in 2010 at MAL Zrt Factory Site in Ajka, Hungary, International Conference on Case Histories. Geotechnical Engineering, Missouri University of Science and Technology ’Scholars’ Mine, 2013. https://scholarsmine.mst.edu/icchge/7icchge/session03/10/.
  • [13] Roche, Ch. Thygesen, K. Baker, E. 2017. Mine Tailings Storage, Safety Is No Accident, United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal.
  • [14] Vogel, A. 2013. Failures of dams - challenges to the present and the future. IABSE Workshop on Safety, Failures and Robustness of Large Structures, Inter. Assoc. Bridge Struct. Eng. 178–185.
  • [15] World Information Service on Energy (WISE), 2019. WISE-Uranium Project, Chronology of Major Tailings Dam Failures, 2019, online:https://www.wise-uranium.org/mdaf.html. (accessed 1 March 2021).
  • [16] Natural Resources Governance Institute (NRGI), 2017 Resource Governance Index, 2017. Available at: https://api.resourcegovernanceindex.org/system/documents/documents/000/000/046/original/2017. (accessed 1 March 2021).
  • [17] Dhungana, P., Wang, F. Relationship between seepage water volume and total suspended solids of landslide dam failure caused by seepage: an experimental investigation. Geoenviron Disasters 7, 13 (2020). https://doi.org/10.1186/s40677-020-0144-6
  • [18] Myhre, G., Alterskjær, K., Stjern, C.W. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9, 16063 (2019). https://doi.org/10.1038/s41598-019-52277-4
  • [19] Fuławka, K., Stolecki, L., Jaśkiewicz-Proć, I., Pytel, W., Mertuszka, P. 2019. Time-Frequency Characteristic of Seismic Waves Observed in the Lower Silesian Copper Basin, 19th International Multidisciplinary Scientific Geoconference SGEM 2019: Conference Proceedings. Volume 19. Science and Technologies in Geology, Exploration and Mining. Issue 1.3, s. 693–700. https://doi.org/10.5593/sgem2019/1.3/S03.088
  • [20] Fuławka, K., Stolecki, L., Jaśkiewicz-Proć, I., Pytel, W., Mertuszka, P. 2020. The analysis of seismic load charactresitic observed in the Lower Silesian Copper Basin. SWS Journal of Earth & Planetary Sciences, 2(2), 35–49. https://doi.org/10.35603/eps2020/issue2.03
  • [21] Domańska, D., Wichur, A. 2006. Method of assessment of stability of embankment and slopes on the basis of inclinometric measurements. GEOINŻYNIERIA drogi mosty tunele. 4(11), 36–40.
  • [22] Suddle, S., 2009. The weighted risk analysis, Safety Science. 47(5), 668–679.
  • [23] Aven, T., 2010. On how to define, understand and describe risk, Reliability Engineering & System Safety. 95(6), 623–631
  • [24] Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., Knutsson, S. 2020. Dam Safety and Earthquakes. Journal of Earth Sciences and Geotechnical Engineering. 10(6), 79–132.
  • [25] United State Committee on Large Dams (USCOLD), 2000. Observed Performance of Dams during Earthquakes. Volume II 5-20 Online: http://www.ussdams.org/wp-content/uploads/2016/05/ObservedPerformanceII_V2.pdf (accessed 1 March 2021)
  • [26] United States Society on Dams (USSD). 2014. Observed Performance of Dams During Earthquakes Volume III. Online: https://damfailures.org/wp-content/uploads/2018/02/EQPerfo2_v3.pdf (accessed 1 March 2021)
  • [27] Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J. R.; Calhau, J. 2016. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence. Geophysical Research Letters, 43(10), 4929–4936. https://doi.org/10.1002/2016GL069257
  • [28] Castañeda, J., Bustamante, T., Perez, F., Romanel, C. 2013. A Seismic Hazard Assessment for a Tailing Dam Site in Minas Gerais - Brazil, 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013, 62–67. https://doi.org/10.1190/sbgf2013-362.
  • [29] Adamczyk, J. 2012. Characteristics of chosen tailings 'dams' failures. Cuprum. 3(64), 65–78.
  • [30] Jibson, R.W. 2011. Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122(1–2), 43–50. https://doi.org/10.1016/j.enggeo.2010.09.017
  • [31] Santamarina, J.C., Torres-Cruz, L.A., Robert, C. Bachus. 2019. Why Coal Ash and Tailings Dam Disasters Occur. Science, 364 (6440), 526–28. https://doi.org/10.1126/science.aax1927.
  • [32] Guterch, B., 2009. Seismicity in Poland in the light of historical records, Przegląd Geologiczny, 57(6), 2009.
  • [33] Mirek, K., Mirek, J., 2011. Correlation between ground subsidence and induced mining seismicity, Upper Silesia Coal Basin Case, Polish Journal of Environmental Studies; 20(4A), 253–257.
  • [34] Adamczyk, J., Cała, M., Flisiak, J., Kolano, M., Kowalski, M. 2013. Slope stability analysis of waste dump in Sandstone Open Pit Osielec. Studia Geotechnica et Mechanica. 35(1), 3–18.
  • [35] IAEA Safety Standards Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants for protecting people and the environment No. NS-G-3.6. 2004. online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1195_web.pdf (accessed 1 March 2021)
  • [36] Walling, M., Silva, W., Abrahamson, N., 2008. Nonlinear site amplification factors for constraining the NGA models. Earthquake spectra. 24(1), 243–255.
  • [37] Mining Scale of Intensity - GSI-2004/18, 2004,
  • [38] BS EN 1998-1:2004+A1:2013 Eurocode 8: Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings, 2004
  • [39] Coulomb, Ch. 1777. Magnetism memoire,
  • [40] Petterson, K.E. 1955. The early history of circular sliding surfaces. Geotechnique. 5, 275–296.
  • [41] Fellenius W., 1927. Erdstatische Berechnungenmit Reibung und Kohasion, Ernst, Berlin, 1927
  • [42] TERZAGHI C. 1925 – Erdbaumechanik auf Bodenphysikalischer Grundlage. Franz Deuticke, Liepzig-Vienna.
  • [43] Janbu, N. 1954. Application of composite slip surfaces for stability analysis. In Proceedings of the European Conference on Stability of Earth Slopes, Stockholm. Vol. 3. pp. 43–49.
  • [44] Bishop, A.W. (1955) "The Use of the Slip Circle in the Stability Analysis of Slopes", Geotechnique, Great Britain, Vol. 5, No. 1, Mar., pp. 7–17
  • [45] Morgenstern, N.R., Price, V.E. 1965. The analysis of the stability of general slip surfaces. Géotechnique, 15(1): 79–93.
  • [46] Spencer, E. 1967. A method of analysis of the stability of embankments assuming parallel interslice forces. Géotechnique, 17(1): 11–26.
  • [47] Melo, C., Sharma, S. 2004 Seismic coefficients for pseudostatic slope analysis. In: 13th World conference on earthquake engineering, Vancouver, Canada
  • [48] Choudhury, D., Basu, S. Bray, J.D. 2007. Behaviour of Slopes under Static and Seismic Conditions by Limit Equilibrium Method. Embankments, Dams and Slopes: Lessons from the New Orleans Levee Failures and Other Current Issues. GSP 161.
  • [49] Hazari, S., Ghosh, S., Richi, S. 2020. A Comparative Study of Soil Slope Stability Under Seismic Loading Condition. In: Latha Gali M., Raghuveer Rao P. (eds) Geohazards. Lecture Notes in Civil Engineering, vol 86. Springer, Singapore. https://doi.org/10.1007/978-981-15-6233-4_2
  • [50] Liu, S.Y., Shao, L.T., Li, H.J. 2015. Slope stability analysis using the limit equilibrium method and two finite element methods, Computers and Geotechnics. 63, 291–298. https://doi.org/10.1016/j.compgeo.2014.10.008.
  • [51] Cheng, Y.M., Lansivaara, T., Wei, W.B., 2007. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 34(3), 137–150.
  • [52] Griffiths, D.V. Lane, P.A. 1999. Slope stability analysis by finite elements. Géotechnique. 49(3), 387–403. https://doi.org/10.1680/geot.1999.49.3.387
  • [53] Zheng, H., Liu, D.F., Li, C.G. 2005. Slope stability analysis based on elasto-plastic finite element method Int J Numer Meth Eng. 64(14), 1871–1888. https://doi.org/10.1016/j.compgeo.2006.10.011
  • [54] Zienkiewicz, O.C., Humpheson, C., Lewis, R.W. 1975. Associated and nonassociated. Visco-plasticity and plasticity in soil mechanics. Geotechnique 25(4), 671–689.
  • [55] Duncan, J.M. 1996. State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. 122(7), 577–596.
  • [56] Shangyi, Z., Yingren, Z., Weidong, D. 2003. Stability analysis on jointed rock slope by strength reduction FEM. Chin. J. Rock Mech. Eng. 2(020)
  • [57] Yingren, Z., Shangyi, Z. 2004. Application of strength reduction FEM in soil and rock slopes. Chin. J. Rock Mech. Eng. 23(19), 3381–3388.
  • [58] Hammah, R.E., Yacoub, T.E., Corkum, B., Wibowo, F., Curran, J.H. 2007. Analysis of blocky rock slopes with finite element shear strength reduction analysis. In: Proceedings of the 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, 329–334.
  • [59] Chiwaye, H. 2010. A Comparison of the Limit Equilibrium and Numerical Modelling Approaches to Risk Analysis for Open-Pit Mine Slopes. Journal-South African Institute of Mining and Metallurgy. 110(10), 571–580
  • [60] Kucewicz, M., Baranowski, P., Małachowski, J. 2021. Dolomite fracture modeling using the Johnson-Holmquist concrete material model: Parameter determination and validation, Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 335–350, https://doi.org/10.1016/j.jrmge.2020.09.007.
  • [61] Baranowski, P., Mazurkiewicz, Ł., Małachowski, J., Pytlik, M. 2020. Experimental testing and numerical simulations of blast-induced fracture of dolomite rock. Meccanica. 55, 2337–2352 (2020). https://doi.org/10.1007/s11012-020-01223-0
  • [62] Pytel, W., Fuławka, K., Mertuszka, P., Szumny, M., Koziarz, E. 2019. Amplitude and Frequency Characteristics of Rotational Ground Motions Generated by Paraseismic Events, 19th International Multidisciplinary Scientific Geoconference SGEM 2019 : Conference Proceedings. Volume 19. Science and Technologies in Geology, Exploration and Mining, Issue 1.3, s. 31–38. https://doi.org/10.5593/sgem2019/1.3/S03.004
  • [63] Zhao, J. 2000. Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 37(7), 1115–1121
  • [64] Owen, D.R.J., Hinton, E. 1980. Finite Elements in Plasticity-Theory and Practice Pineridge Press, Swansea.
  • [65] Pietruszczak, S. 2010. Fundamentals of Plasticity in Geomechanics. CRC Press.
  • [66] Labuz, J. F., Zang, A. 2012. Mohr–Coulomb failure criterion. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 2007–2014, 227–231.
  • [67] RocScience, 2021, Dynamic Theory Manual, available online: https://www.rocscience.com/help/rs2/theory/dynamic_theory_manual.htm
  • [68] Kuhlemeyer, R.L., Lysmer, J. 1973. Finite Element Method Accuracy for Wave Propagation Problems, Journal of the Soil Mechanics and Foundations Division. 99(5), 421–427.
  • [69] Sahin Y, Riza Motorcu A. Surface Roughness Model for Machining Mild Steel with Coated Carbide Tool. Materials & Design, 2005, 26, 321–326. https://doi.org/10.1016/j.matdes.2004.06.015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8c0ae27-2f6a-4c65-a417-11ff78dd8483
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.