PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel mesh generator for biomechanical purpose

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of a biological structure with numerical methods based on engineering approach (i.e. Computational Solid Mechanics) is becoming more and more popular nowadays. The examination of complex, well reproduced biological structures (i.e. bone) is impossible to perform with a single workstation. The mesh for Finite Element Method (FEM) of the order of 106 is required for modeling a small piece of trabecular bone. The homogenization techniques could be used to solve this problem, but these methods require several assumptions and simplifications. Hence, effective analysis of a biological structure in a parallel environment is desirable. The software for structure simulation at cluster architecture are available; however, FEM generator is still inaccessible in that environment. The mesh generator for biological applications – Cosmoprojector – developed at Division of Virtual Engineering, Poznan University of Technology has been adapted for the parallel environment. The preliminary results of complex structure generation confirm the correctness of the proposed method. In this paper, the algorithm of computational mesh generation in a parallel environment has been presented. The proposed system has been tested at biological structure.
Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Combustion Engines and Transport, Poznań, Polska
autor
  • Poznan University of Technology, Institute of Combustion Engines and Transport, Poznań, Polska
Bibliografia
  • 1. Będziński R., Tyndyk M., 2003, FEManalysis of strain distribution in tiba bone and relationship between strains and adaptation of bone tissue, Computer Assisted Mechanics and Engineering, 10, 3
  • 2. Eager D.L., Zahorjan J., Lazowska E.D., 1989, Speedup versus efficiency in parallel systems, IEEE Transactions on Computers, 38, 408-423
  • 3. Nowak M., 2006a, A generic 3-dimensional system to mimic trabecular bone surface adaptation, Computer Methods in Biomechanics and Biomechanical Engineering, 9, 5, 313-317
  • 4. Nowak M., 2006, Structural optimization system based on trabecular bone surface adaptation, Journal of Structural and Multidisciplinary Optimization, 32, 3, 241-251
  • 5. Nowak M., Morzyński M., Łodygowski T., Wierszycki M., Szajek K., 2010, The hierarchical model of trabecular bone adaptation to simulate the structural evolution of skeleton elements, 37th Solid Mechanics Conference, 232-232
  • 6. Pedersen P., 2003, Optimal Design – Structures and Materials – Problems and Tools, Department of Mechanical Engineering, Solid Mechanics, Denmark
  • 7. Simpleware ltd., 2008, ScanIP, +ScanFE and +ScanCAD, Tutorial guide
  • 8. Telega J.J., Gałka A., Tokarzewski S., 1999, Effective moduli of trabecular bone, Acta of Bioengineering and Biomechanics, 1, 1, 53-57
  • 9. Waarsing E., 2004, Responsible researcher MIAB Project: Mechanical Integrity and Architecture of Bone Relative to Osteoporosis, Ageing and Drug Treatment, Funding: European Union Fifth Framework Programme, Project Reference: QLK6-CT-1999-02024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8bfd2f9-37b0-418e-bab9-88d5e01be1d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.