Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
PbZr0.52Ti0.48O3 nanocrystals were synthesized by a hydrothermal method. The effect of NaOH concentration, reaction temperature and time on nucleation and growth of PbZr0.52Ti0.48O3 nanocrystals was investigated. As the 0.05 mol/L PbZr0.52Ti0.48O3 precursors were heated at 200 °C for 21 h with NaOH concentration of 0.5 mol/L, the tetragonal PbZr0.52Ti0.48O3 nanocrystals were formed, and the grain size was more than 20 nm. With increasing the NaOH concentration from 0.5 to 1.5 mol/L, the grain size of PbZr0.52Ti0.48O3 nanocrystals decreased. When the precursors were heated at different temperatures (140 °C to 200 °C) for 21 h with 1.0 mol/L NaOH, single-phase PbZr0.52Ti0.48O3 nanocrystals were obtained at 160 °C to 200 °C. With increasing the reaction temperature from 160 °C to 200 °C, the grains size of PbZr0.52Ti0.48O3 nanocrystals increased from 5 nm to 9 nm. When the precursors were heated at 160 °C in different reaction times from 6 h to 21 h, the evolution from amorphous to crystalline PbZr0.52Ti0.48O3 nanocrystals in correlation with the reaction time was observed. Single crystalline PbZr0.52Ti0.48O3 nanocrystals with narrow size distribution (from 5 nm to 9 nm) were synthesized by controlling the NaOH concentration, reaction temperature and time. The obtained results can find potential application in preparing PbZr0.52Ti0.48O3 thin films on flexible substrates.
Wydawca
Czasopismo
Rocznik
Tom
Strony
473--481
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Bibliografia
- [1] SCOTT J. F., PAZ DE ARAUJO C. A., Science, 246 (1989), 1400.
- [2] PAZ DE ARAUJO C.A., CUCHIARO J.D., MCMILLAN L.D., SCOTT M.C., SCOTT J.F., Nature, 374 (1995), 627.
- [3] WEBBER K.G., VOEGLER M., KHANSUR N.H., KAESWURM B., DANIELS J.E., SCHADER F.H., Smart Mater. Struct., 26 (2017), 063001.
- [4] PARK K., SON J.H., HWANG G.T., JEONG C.K., RYU J., KOO M., CHOI J., LEE S.H., BYUN M., WANG Z.L., LEE K.J., Adv. Mater., 26 (2014), 2514.
- [5] NUFFER J., LUPASCU D.C., RODEL J., Acta. Mater., 48 (2000), 3783.
- [6] KANNO I., KOTERA H., WASA K., Sens. Actuat. A, 107 (2003), 68.
- [7] GLASS C., AHMED W., VAN RUITENBEEK J., Mater. Lett., 125 (2014), 71.
- [8] KOMANDIN G.A., PORODINKOV O.E., SPEKTOR I.E., VOLKOV A.A., VOROTILOV K.A., SEREGIN D.S., SIGOV A.S., Phys. Solid State, 60 (2018), 1226.
- [9] DUFAY T., GUIFFARD B., SEVENO R., TOMAS J., Energy Technol., 6 (2018), 917.
- [10] WAN Q., GU Q., XING J., CHEN J., Mater. Lett., 92 (2013), 52.
- [11] RATH M., VARADARAJAN E., NATARAJAN V., RAO R., Ceram. Int., 44 (2018), 8749.
- [12] WANG Z.D., LAI Z.Q., HU Z.G., J. Alloy. Compd., 583 (2014), 452.
- [13] ZHAO J.S., PARK D.Y., SEO M. J., HWANG C.S., HAN Y.K., YANG C.H., OH K.Y., J. Electrochem. Soc., 151 (2004), c283.
- [14] GUO D., MAO W., QIN Y., HUANG Z., WANG C., SHEN Q., ZHANG L., J. Mater. Sci.-Mater. El., 23 (2012), 940.
- [15] GUO D., MAO W., QIN Y., HUANG Z., WANG C., SHEN Q., ZHANG L., Bull. Mater. Sci., 35 (2012), 353.
- [16] FU C., MAO W., QIN Y., HUANG Z., GUO D., J. Mater. Sci.-Mater. El., 22 (2011), 911.
- [17] GUO D., SATO K., HIBINO S., TAKEUCHI T., BESSHO H., KATO K., J. Mater. Sci., 49 (2014), 4722.
- [18] ZHANG Z., LI X., HUANG Z., ZHANG L., HAN J., ZHOU X., GUO D., JU Y., J. Mater. Sci.-Mater. El., 29 (2018), 7453.
- [19] DANG F., KATO K., IMAI H., WADA S., HANEDA H., KUWABARA M., Cryst. Growth Des., 11 (2011), 4129.
- [20] LI X., HUANG Z., ZHANG L., GUO D., Electron. Mater. Lett., 14 (2018), 610.
- [21] KUTTY T., BALACHANDRAN R., Mater. Res. Bull., 19 (1984), 1479.
- [22] DENG Y., LIU L., CHENG Y., NAN C., ZHAO S., Mater. Lett., 57 (2003), 1675.
- [23] HUANG H., CAO G. Z., SHEN I. Y., Sens. Actuat. A, 214 (2014), 111.
- [24] TAKADA Y., MIMURA K., KATO K., Jpn. J. Ceram. Soc., 126 (2018), 326.
- [25] MENG Q., ZHU K., PANG X., QIU J., SHAO B., JI H., Adv. Powder Technol., 24 (2013), 212.
- [26] LI D., NIELSEN M.H., LEE J., FRANDSEN C., BANFIELD J.F., DE YOREO J., Science, 336 (2012), 1014.
- [27] LIAO H., CUI L., WHITELAM S., ZHENG H., Science, 336 (2012), 1011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8b81d28-a88f-489f-998f-67dc48c3045c