PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of single-crystalline Pb(Zr0.52Ti0.48)O3 nanocrystals by hydrothermal method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PbZr0.52Ti0.48O3 nanocrystals were synthesized by a hydrothermal method. The effect of NaOH concentration, reaction temperature and time on nucleation and growth of PbZr0.52Ti0.48O3 nanocrystals was investigated. As the 0.05 mol/L PbZr0.52Ti0.48O3 precursors were heated at 200 °C for 21 h with NaOH concentration of 0.5 mol/L, the tetragonal PbZr0.52Ti0.48O3 nanocrystals were formed, and the grain size was more than 20 nm. With increasing the NaOH concentration from 0.5 to 1.5 mol/L, the grain size of PbZr0.52Ti0.48O3 nanocrystals decreased. When the precursors were heated at different temperatures (140 °C to 200 °C) for 21 h with 1.0 mol/L NaOH, single-phase PbZr0.52Ti0.48O3 nanocrystals were obtained at 160 °C to 200 °C. With increasing the reaction temperature from 160 °C to 200 °C, the grains size of PbZr0.52Ti0.48O3 nanocrystals increased from 5 nm to 9 nm. When the precursors were heated at 160 °C in different reaction times from 6 h to 21 h, the evolution from amorphous to crystalline PbZr0.52Ti0.48O3 nanocrystals in correlation with the reaction time was observed. Single crystalline PbZr0.52Ti0.48O3 nanocrystals with narrow size distribution (from 5 nm to 9 nm) were synthesized by controlling the NaOH concentration, reaction temperature and time. The obtained results can find potential application in preparing PbZr0.52Ti0.48O3 thin films on flexible substrates.
Wydawca
Rocznik
Strony
473--481
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Bibliografia
  • [1] SCOTT J. F., PAZ DE ARAUJO C. A., Science, 246 (1989), 1400.
  • [2] PAZ DE ARAUJO C.A., CUCHIARO J.D., MCMILLAN L.D., SCOTT M.C., SCOTT J.F., Nature, 374 (1995), 627.
  • [3] WEBBER K.G., VOEGLER M., KHANSUR N.H., KAESWURM B., DANIELS J.E., SCHADER F.H., Smart Mater. Struct., 26 (2017), 063001.
  • [4] PARK K., SON J.H., HWANG G.T., JEONG C.K., RYU J., KOO M., CHOI J., LEE S.H., BYUN M., WANG Z.L., LEE K.J., Adv. Mater., 26 (2014), 2514.
  • [5] NUFFER J., LUPASCU D.C., RODEL J., Acta. Mater., 48 (2000), 3783.
  • [6] KANNO I., KOTERA H., WASA K., Sens. Actuat. A, 107 (2003), 68.
  • [7] GLASS C., AHMED W., VAN RUITENBEEK J., Mater. Lett., 125 (2014), 71.
  • [8] KOMANDIN G.A., PORODINKOV O.E., SPEKTOR I.E., VOLKOV A.A., VOROTILOV K.A., SEREGIN D.S., SIGOV A.S., Phys. Solid State, 60 (2018), 1226.
  • [9] DUFAY T., GUIFFARD B., SEVENO R., TOMAS J., Energy Technol., 6 (2018), 917.
  • [10] WAN Q., GU Q., XING J., CHEN J., Mater. Lett., 92 (2013), 52.
  • [11] RATH M., VARADARAJAN E., NATARAJAN V., RAO R., Ceram. Int., 44 (2018), 8749.
  • [12] WANG Z.D., LAI Z.Q., HU Z.G., J. Alloy. Compd., 583 (2014), 452.
  • [13] ZHAO J.S., PARK D.Y., SEO M. J., HWANG C.S., HAN Y.K., YANG C.H., OH K.Y., J. Electrochem. Soc., 151 (2004), c283.
  • [14] GUO D., MAO W., QIN Y., HUANG Z., WANG C., SHEN Q., ZHANG L., J. Mater. Sci.-Mater. El., 23 (2012), 940.
  • [15] GUO D., MAO W., QIN Y., HUANG Z., WANG C., SHEN Q., ZHANG L., Bull. Mater. Sci., 35 (2012), 353.
  • [16] FU C., MAO W., QIN Y., HUANG Z., GUO D., J. Mater. Sci.-Mater. El., 22 (2011), 911.
  • [17] GUO D., SATO K., HIBINO S., TAKEUCHI T., BESSHO H., KATO K., J. Mater. Sci., 49 (2014), 4722.
  • [18] ZHANG Z., LI X., HUANG Z., ZHANG L., HAN J., ZHOU X., GUO D., JU Y., J. Mater. Sci.-Mater. El., 29 (2018), 7453.
  • [19] DANG F., KATO K., IMAI H., WADA S., HANEDA H., KUWABARA M., Cryst. Growth Des., 11 (2011), 4129.
  • [20] LI X., HUANG Z., ZHANG L., GUO D., Electron. Mater. Lett., 14 (2018), 610.
  • [21] KUTTY T., BALACHANDRAN R., Mater. Res. Bull., 19 (1984), 1479.
  • [22] DENG Y., LIU L., CHENG Y., NAN C., ZHAO S., Mater. Lett., 57 (2003), 1675.
  • [23] HUANG H., CAO G. Z., SHEN I. Y., Sens. Actuat. A, 214 (2014), 111.
  • [24] TAKADA Y., MIMURA K., KATO K., Jpn. J. Ceram. Soc., 126 (2018), 326.
  • [25] MENG Q., ZHU K., PANG X., QIU J., SHAO B., JI H., Adv. Powder Technol., 24 (2013), 212.
  • [26] LI D., NIELSEN M.H., LEE J., FRANDSEN C., BANFIELD J.F., DE YOREO J., Science, 336 (2012), 1014.
  • [27] LIAO H., CUI L., WHITELAM S., ZHENG H., Science, 336 (2012), 1011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8b81d28-a88f-489f-998f-67dc48c3045c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.