PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multi-Step FEA-Based Design and Performance Analysis for a Single-Phase PM Brushless DC Motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, an approach to design a novel single-phase permanent magnet (PM) brushless DC (BLDC) motor, based on multi-step FEA numerical prototyping, is presented. The designing procedure is carried out by using a series of 2D finite element simulations, until the design for a best performing PM BLDC motor is obtained. The proposed novel motor topology is developed using a generic motor, and through several steps, asymmetrical stator poles are devised, where one pair is particularly shaped. Permanent magnets are also simultaneously shaped. The aim of this research study is to improve performance characteristics of the motor by more efficient utilisation of active materials during the manufacture of rotor poles and stator cores. The magnetic field distribution in the motor crosssection, along with several other relevant electromagnetic and electromechanical characteristics, are computed, presented in figures and charts and analysed. The cogging torque and static torque waveforms, as well as the distribution of flux density and the air-gap flux, flux linkage and the induced back-emf, are in the focus of the presented research study. The results show that the novel design topology reveals featured operating characteristics, providing a smooth overall performance of the PM BLDC motor.
Wydawca
Rocznik
Strony
219--234
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Ss. Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies, Skopje 1000, North Macedonia
  • Ss. Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies, Skopje 1000, North Macedonia
Bibliografia
  • Boglietti, A., El-Refaie, A. M., Drubel, O., Omekanda, A. M. and Bianchi, N., Agamloh, E. B., Popescu, M., Di Gerlando, A. and Borg Bartolo, J. (2014). Electrical Machine Topologies: Hottest Topics in the Electrical Machine Research Community. IEEE Industrial Electronics Magazine, 8(2), pp. 18-30. doi: 10.1109/MIE.2013.2294077.
  • El-Refaie, A. (2013). Fractional-slot concentratedwindings: A paradigm shift in electrical machines. In: 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11-12 March 2013, pp. 24-32. doi: 10.1109/WEMDCD.2013.6525162.
  • Ferraris, L., Franchini, F. and Poskovic, E. (2015). Design optimization of bonded PM BLDC motors with reference to the cogging torque amplitude. In: Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9-12 November 2015, pp. 001264-001269.
  • Guo, L., Wang, Y., Wang, H. and Zhang, Z. (2023a). Design of High Power Density Double-Stator Permanent Magnet Synchronous Motor. IET Electric Power Applications, 17(4), pp. 421-431. doi: 10.1049/elp2.12275.
  • Guo, Y., Ba, X., Liu, L., Lu, H., Lei, G., Yin, W. and Zhu, J. (2023b). A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies, 16, p. 2053. doi: 10.3390/en16042053.
  • Hwang, M.-H., Lee, H.-S. and Cha, H.-R. (2018). Analysis of Torque Ripple and Cogging Torque Reduction in Electric Vehicle Traction Platform Applying Rotor Notched Design. Energies, 11(11), p. 3053.
  • Königs, M., Baccouche, H., Breser, S., Jöns, T. and Löhlein, B. (2023). Simulation Time Reduction with 2.5D FEM-Analysis for Axial Flux Machines. Power Electronics and Drives, 8(43), pp. 100-108.
  • Lefley, P., Petkovska, L. and Cvetkovski, G. (2011). Optimisation of the design parameters of an asymmetric brushless DC motor for cogging torque minimisation. In: Proceedings of 14th International European Conference on Power Electronics and Applications (EPE), Birmingham, United Kingdom, 30 August - 1 September 2011, pp. 1-8 on CD.
  • Ling, P., Ishak, D. and Tiang, T. L. (2016). Influence of magnet pole arc variation on the performance of external rotor permanent magnet synchronous machine based on finite element analysis. In: Proceedings of IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 28-29 November 2016, pp. 552-557.
  • Ocak, C., Dalcalı, A., Celik, E. and Uygun, D. (2017). FEA-Based Design Improvement of Small Scale BLDCMs Considering Magnet Thickness and Pole Embrace. International Journal of Computing, Communication and Instrumentation Engineering, 4(2), pp. 31-35.
  • Petkovska, L. and Cvetkovski, G. (2022). Optimising stator design of a single phase PM BLDC motor for improved cogging torque profile. In: Proceedings of 8th International Symposium on Applied Electromagnetics (SAEM), Struga, North Macedonia, 26-29 June 2022, pp. 59-65.
  • Petkovska, L., Lefley, P. and Cvetkovski, G. (2022). Shaping the Topology of a Single Phase BLDC Motor for Reduced Cogging Torque and Improved Performance. The European Physical Journal, Applied Physics, 97(id.36), 8p.
  • Quintal-Palomo, R. E., Gwoździewicz, M. and Dybkowski, M. (2016). Parametric Analysis for the Design of a 4 Pole Radial Permanent Magnet Generator for Small Wind Turbines. Power Electronics and Drives, 1(36)(2), pp. 175-186. doi: 10.5277/PED160211.
  • Ramakrishnan, K., Curti, M., Zarko, D., Mastinu, G., Paulides, J. J. H. and Lomonova, E. A. (2017). Comparative Analysis of Various Methods for Modelling Surface Permanent Magnet Machines. IET Electric Power Applications, 11(4), pp. 540-547. doi: 10.1049/iet-epa.2016.0720.
  • Rezal, M. and Ishak, D. (2019). Performance Enhancement of Underwater Propulsion Motor using Differential Evolution Optimization. Indian Journal of Geo Marine Sciences, 48(7), pp. 1113-1119.
  • Rupam, Marwaha, S. and Marwaha, A. (2022). FEA Based Design of Outer Rotor BLDC Motor for Battery Electric Vehicle. International Journal of Electrical and Electronics Research, 10(4), pp. 1130-1134.
  • Simcenter: MagNet Suite. https://www.plm.automation.siemens.com/global/en/products/simcenter/ magnet.html.
  • Simón-Sempere, V., Simón-Gómez, A., Burgos-Payán, M. and Cerquides-Bueno, J.-R. (2021). Optimisation of Magnet Shape for Cogging Torque Reduction in Axial-Flux Permanent-Magnet Motors. IEEE Transactions on Energy Conversion, 36(4), pp. 2825–2838. doi: 10.1109/ TEC.2021.3068174.
  • Wrobel, R. and Mellor, P. H. (2008). Design Considerations of a Direct Drive Brushless Machine with Concentrated Windings. IEEE Transactions on Energy Conversion, 23(1), pp. 1-8.
  • Yokoi, Y., Higuchi, T. and Miyamoto, Y. (2016). General Formulation of Winding Factor for Fractional Slot Concentrated Winding Design. IET Electric Power Applications Journal, 10(4), pp. 231-239.
  • Zhu, Z. Q. and Li, Y. X. (2018). Modularity Techniques in High Performance Permanent Magnet Machines and Applications. CES Transactions on Electrical Machines and Systems, 2(1), pp. 93-103.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8b7a59f-ce93-455b-8d36-586ddbc6d2cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.