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The paper describes method of parameters selection for control system with 
fractional order PIλDμ

 controller steering second order oscillated object. As a selection 
algorithm was used simulated annealing optimization method with random variant of 
cooling strategy. As a target function for optimization was selected Integral Squared 
Error (ISE). 
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1. Introduction 

 
Fractional order calculus becoming more widely use inter alia in nowadays 

automatics. There is increase of papers describing analysis and implementation 
of control systems based on fractional order derivative i. e. automatic  

The principle of operation of fractional order controller is similar to the PID 
controller. The difference appears in fractional order of integration ʎ and 
differentiation µ. The addition of two new parameters cause that previously 
known method of PID regulator tuning no longer fulfill its role. Therefore, this 
article presents an analysis of the optimization controllers PIλDμ with use of 
metaheuristic simulated annealing method. 
 

2. Fractional differential calculus 
 

Fractional order differential calculus expands basic definition of integral and 
derivative included in classis integral calculus. Such an extension a gives 
completely new opportunities in the mathematical analysis of objects and 
phenomena occurring in nature, control theory and its applications. 

Currently there are three known basic definitions of differential-integral 
(generalized formula for the integral and differential fractional). The first, 
Riemann-Liouville definition can be derived from the formula for the integral 
multiple [6]: 
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where: n – integrations number (n ϵ N), (a,x) – integral interval, Γ(n-1) – Euler’s 
gamma. 

The extension of the integral formula for the row α ϵ R allows to define 
integral fractional according to the definition of the Riemann-Liouville described 
in formula [6, 7]: 
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where: α – fractional order of integration in set (α ϵ R+). 
Generalization of equation (2) for differential-integral is given by  
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where : α ϵ R, k ϵ N and k-1≤  α ≤k. 
Positive order integral order (α > 0) in equation (3) means integration, while 

negative order (α < 0) means differentiation.  
The issues related to the theory of control is most commonly used record 

mathematical model of controlled systems and controls to the plane of Laplace. 
For differential-integral Laplace transform is: 
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With use of formula (4) becomes implementation problem, due to the 
requirement of knowledge of the initial conditions for fractional order derivative. 
The problem is that in most application we can’t get physical definition of 
fractional order derivative. Hence more often used is Caputo definition of 
differential-integral: 
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where: k-1< α <k. 
Equation (5) differs from Reimann-Louville’s differential-integral mainly in 

fractional order derivative place. In this case derivative of integer order 
)Nka1k(:k   is under integral. Thanks to this Laplace transform of 

differential - integral is given by: 
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Initial conditions are defined only for integral order derivative, so their 
physical interpretation is much easier. 

Knowing definition of differential-integral form (6) let define transmittance 
G(s) for continuous fractional order system (assuming zero initial conditions) 
with formula: 
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where: Y(s), U(s) – Laplace transform of output and input signal. 
To obtain fractional order transfer function required is to use one of the 

approximation method of fractional systems. In paper [9] described are few well 
known methods of fractional order operator approximations such as: continued 
fraction expansions (CFE), Carlson’s method, Matsuda’s method and 
Oustaloup’s method. In this paper Oustaloup’s method was applied. Fractional 
order operator denoted as: 

rssH )( ,   r ,   ]1 ;1[r        (8) 
in frequency interval (ωl, ωh) as: 
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where: N – approximation order, C0 – gain described as: 
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where: ωl, ωh – zeros end poles of transfer function: 
12
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One of the basic example of fractional order calculus application are 
fractional order PIλDμ controllers which are equivalent to integral order PID 
controller. Such a controller have, besides three basic parameters – gains KP, KI, 
KD, two new parameters – fractional order of integral λ (gdzie 0 < λ < 1) and 
fractional order of derivative μ (gdzie 0 < μ < 1): 

 sKsKKsG DIP  )(       (12) 
 

3. Simulated annealing 
 

The method of simulated annealing was described for the first time in from 
1983 [2] and [1] from 1984. Both papers were develop independently to 
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themselves. Described method of optimization is based on algorithm defined by 
N. Metropolis and published in [5] in 1953 year, for simulation of behavior of 
atoms in thermodynamic equilibrium at given temperature. Metropolis in his 
work found than for given temperature T probability of atoms energy increase 
for δE is defined as: 

Tk
E

eEp *)(





           (13) 
where: k – Boltzman’s constant. 

According to Metropolis probability of system energy change decreases with 
increase of energy change δE and decrease of temperature T. Primary algorithm 
rely on iterative draw of energy change δE. If drawn value of energy is higher 
than previous one than it is automatically accepted as new value of energy. 
Otherwise, drawn value is selected as new value of energy only with probability 
defined in (13) – there must be additional drawing. This is due to assumption 
than atoms energy can grow only with Metropolis probability [3]. 

A foregoing algorithm was modified in papers from 1983 and 1984 and 
adapted to issue of optimization. Authors of [2] defined analogies between 
calculating probability of energy change and looking for the objective function 
minimum. Instead of energy change introduced appellation of old and new 
objective function value. At the beginning algorithm run from start point x0, for 
which value of the objective function is equivalent to start atoms energy level E. 
Now the energy is equivalent to value of objective function. Next new point x is 
drown and new value of objective function is calculated. If new value is better 
(smaller) than old value point x is automatically selected as solution. If new 
value is higher than old one, point x is selected as solution but only with given 
by formula (13) probability. 

This optimization algorithm is called Metropolis method, and is base for 
simulated annealing method. Basic difference between this methods is 
possibility of temperature change in (13). Now parameter t is still called 
temperature, despite that analogy between it and thermodynamics is not so 
obvious. Instead of Boltzman’s constant there is defined a group of coefficients. 
In every algorithm iteration drawn are points in neigh borough of actual best 
solution. From this set of points algorithm choose new, not always best, point as 
an actual optimization solution. Thanks to possibility of temperature change, 
simulated annealing method can go out of local minimum area and find global 
solution for specified issue. Higher temperature allows to robust change of 
actual solution, so it has higher probability of founding global minimum area. 
After each iteration temperature is reduced according to selected cooling 
strategy. More detail description of basic cooling strategies can be found in [3]. 
Selection of proper strategy should be adapted to given issue. Simulated 
annealing method tuning consist of proper selection of start temperature and 
cooling strategy. 
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4. Simulation 
 

This paper presents simulation studies for purpose to define optimal 
fractional order PID controller parameters - equation (12) - for test object with 
given transfer function in closed system with feedback. Scheme of such an 
system is shown on Figure 1. 

 

Uref(s) E(s)
GR(s)

Ureg(s)
GO(s)

Y(s)+
-

 
Fig. 1. Scheme of analyzed closed system with no noise: Uref(s) – referene signal, E(s) – control 

error, Ureg(s) – object steering signal, GR(s) – regulator transfer function, Y(s) – output signal 
 

As the controled object defined was second order oscillating object with 
transfer function defined as [6]: 

12 122 


TssT
KGO 

        (14) 

where: K – gain, T – self oscillations period, ξ – relative absorption coefficient. 
In studies parameters of object GO was given as: T = 0.1 [s], ξ = 0.2 and  

K = 1. Figure 2 presents step response of open system with no controller. 
 

 
 

Fig. 2. Step response h(t) of object GO in open system with no controller 
 

On the basis of minimization of given control quality factor for each of 
objects selected were five parameters of fractional order PID controller. The 
simulated annealing method was used for minimization. 

As an objective function selected was Integral Square Error (ISE) criterion 
defined as: 


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dtteISE
10

0

2 )(          (15) 

where: e(t) – control error. 
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Such a defined objective function lets to obtain system with small oscillations 
in step response and short time of settling time. 

The calculating application was created in Matlab® & Simulnik® 
Environment with use of additional Toolboxes such as: Control System 
Toolbox® and freeware FOMCON library which has implemented a packet of 
functions calculating and simulating fractional order calculus systems [4]. The 
simulation was held for selected time interval of step response from 0 to 10 
milliseconds and sampling period TS = 1 [μs]. 

First experiment was to compare three different cooling strategies defined 
respectively as: 
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where: Ti – temperature in i-th iteration, T0 – start temperature, TN – end 
temperature, N – iteration number. 

Charts on Figure 3 present temperature and probability (from equation (13)) 
in every iteration for each of strategies respectively defined: strategy  
I – equation (16.a), strategy II – equation (16.b), strategy III – equation (16.c). 

 

 
 

Fig. 3. Cooling strategies (solid line) used for simulated annealing optimization and probability  
of jumping to worse point (dashed line): a) strategy I, b) strategy II, c) strategy III 

 
In compare of those three system cooling strategies, it is seen that first 

strategy has highest probability of jumping to the worse solutions than previous 
one. Chart on Figure 3b and Figure 3c differs in intensity of temperature 
changes, and hence in decrease of probability of jumping to the worse solutions. 
Disadvantages of these two cooling strategies is relatively high probability of 
jumping to the worse solutions at the final phase of optimization, especially in 
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small differences of objective function value (small gradient). All three 
strategies were implemented in simulated model. 

For compare purpose optimization were done from two different start points 
X1 and X2. Figure 4, Figure 5 and Figure 6 present actual point of optimization 
after each iteration and best solution from whole optimization.  
 

  a)           b) 

 
 

Fig. 4. The course of searching the optimal fractional order PID controller parameters  
with use of cooling strategy I: a) from point X1, b) from point X2 

 
  a)           b) 

 
 

Fig. 5. The course of searching the optimal fractional order PID controller parameters  
with use of cooling strategy II: a) from point X1, b) from point X2 

 
  a)           b) 

 
 

Fig. 6. The course of searching the optimal fractional order PID controller parameters  
with use of cooling strategy III: a) from point X1, b) from point X2 
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Figure 7 presents step response for control system with fractional order PID 
controller with parameters given by actually selected solution after first few 
iteration. The example concerns optimization with strategy I started from point 
X1. It is seen that after first iteration step response of system is worse than 
responses in after next iterations. This solution gives much longer stabilization 
time than solutions given in next iterations. Comparing step response for 
solution after seventh and ninth iteration, it can be seen that algorithm jump to 
worse solution. 

 
 

Fig. 7. Step responses of controller with parameter given from optimization solutions  
at first nine iteration 

 
Table 3.1 presents result for experiment for different cooling strategies and 

different optimization start points. Results were selected as best objective 
function value from five optimization in every case. 
 

Tabela 3.1. Optimization results for each attempt 
 

No Start 
point 

Cooling 
strategy KP KI KD µ ʎ ISE 

1 X1 I 101,8 264,5 999,9 0,77 0,99 1,8604E-08 
2 X2 I 0,02 324,4 999,9 0,47 0,99 1,8606E-08 
3 X1 II 915,9 962,4 999,9 0,99 0,99 1,8607E-08 
4 X2 II 135 748,5 999,8 0,1 0,99 1,8605E-08 
5 X1 III 0,01 633,4 999,9 0,29 0,99 1,8605E-08 
6 X2 III 291,8 433,5 998,5 0,03 0,99 1,8770E-08 

 
Second experiment was to optimize regulator for automatic voltage regulator 

(AVR) with fractional order PID controller. As an AVR applied was DC/DC 
buck converter showed in Figure 8. Load voltage was given as an system 
feedback to controller. 
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Fig. 8. DC/DC buck converter as the AVR 
 

Figure 9 presents step response of system from Figure 8 for optimal 
fractional order controller and for comparison classic PID controller. 

 

 
 

Fig. 9. Step response of AVR with fractional order PID controller (solid line)  
and integral order PID controller (dashed) 

 
5. Summary 

 
The paper presents application for method of simulated annealing in fitting 

fractional order PID controller for object with given transfer function and 
automatic voltage regulator. Result shows that studied optimization method can 
be very effective tool for selecting parameters of controllers. 

Analyzing algorithm path of searching, in the first experiment, the best 
solution for each attempt we can present the following conclusion: 

Strategy I, despite that more frequently than other strategies jump to wore 
solution at the beginning, has been most efficient. This strategy is in accordance 
with expectations in the final stages reduces the likelihood of recourse to a new 
point worse than actual solution. 

Solutions in the all strategies were highly different for every start point. 
Especially it is seen in strategy II and III. Differences between values of quality 
factor ISE were very small. It indicates a large number of local extremes in 
objective whit very similar values. Despite this the simulated annealing method 
gives good results in all cases. 
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Comparison of fractional and integral order controller shows that both 
controllers gives similar step response. Fractional controller has slightly shorter 
rise time. 
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