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Modeling and control of a skid-steering mobile platform

with coupled side wheels
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Abstract. This study is devoted to the modeling and control of a 4-wheel, skid-steering mobile platform with coupled side wheels, subject
to lateral and longitudinal slips. The dynamics equations of the platform are derived, and 16 variants of motion distinguished. For the variant
of motion allowing for all possible slips of the wheels two control problems are addressed: the motion planning problem and the trajectory
tracking problem. The former problem is solved by means of a Jacobian motion planning algorithm based on the Endogenous Configuration
Space Approach and, complementarily, using the Optimal Control Approach. The Nonlinear Model Predictive Control is applied to the latter
problem. Performance of these control algorithms is illustrated by a sort of the parking problem. Significant robustness of the predictive
control algorithm against the model uncertainty is revealed.
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1. Introduction

An increase of robot autonomy belongs to the challenges of
contemporary search and rescue robotics [1]. In response to
this challenge the Polish National Centre for Research and
Development has launched the project RobREx focused on
improving autonomy of the rescue and exploration robots.
The project’s main research hypothesis is that the robot’s au-
tonomy can be achieved by equipping the robot with control
algorithms based on the model of its dynamics. This objective
is to be achieved by intertwined design and modeling phas-
es in the robot development. As a consequence, the mobile
platform Rex is being designed, presented in Fig. 1. The Rex
platform is a 4-wheel, skid-steering platform, whose wheels
can either be driven independently or coupled sidewise. The
platform serves as a mobile basis of the mobile manipulator
RobRex, intended for inspection tasks, both indoor as well as
outdoor. The guidelines of design of the platform Rex have
been sketched in [2]. The design of its control system is fol-
lowing the principles formulated in [3].

Fig. 1. Rex platform: actual view

This study addresses the problems of modeling and con-
trol of the mobile platform Rex based on the model of its
dynamics. Throughout this study it has been assumed that the
side wheels of the platform are coupled, the case of inde-
pendently driven wheels is analyzed in [4]. A classical refer-
ence dealing with skid-steering mobile platforms is [5], that
in the RobREx project has inspired a research direction ex-
plored in [6], whose methodology may be traced back to [7].
The approach presented here, motivated by nonholonomic ro-
botics [8], the theory of automotive systems [9, 10], and the
application of predictive control reported in [11], is based on
more general assumptions, including lateral and longitudinal
slips and an under actuated model of the platform dynamics.
The dynamics equations of the Rex platform can be derived
classically [12]. It is assumed that the wheels that are not per-
mitted to slip are subject to traction forces, while the slips are
counteracted by slip reaction forces. In the case of no slip, the
traction forces are computed on the basis of the d’Alembert
principle. A simple linear in the slip model of these forces has
been employed, equivalent to the linearization of the model
introduced in [13, 14]. All forces have been defined as the
generalized forces, in the spirit of [15]. Friction in the drives
and actuators is assumed known and compensated by feed-
back. Taking into account possible combinations of the slips,
16 variants of motion can be defined, starting from the motion
completely without slips and ending with the motion admit-
ting all kinds of slips. Each variant of motion is represented
by a control affine system whose state space dimension varies
from 6 up to 10. The dynamics model reflecting all the vari-
ants of motion results in a sort of switched system in which
specific subsystems are switched on and off dynamically, de-
pending on the road condition. A somewhat similar system is
studied in [16], however in our case the switched subsystems
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are control systems, and the switching is autonomous [17].
Alternatively, the totality of the platform motions could be
regarded as a stratified system [18]. The control of the result-
ing switched system seems to be beyond the available analytic
tools; on the other hand, it is rather unlikely to observe all 16
variants of motion during a mission of the Rex platform. For
these reasons we have focused on two limit variants of mo-
tion: the motion without any slip and the motion with all slips
permitted. The first case is easy, tantamount to a straight line
motion with constant orientation. The second case, involving
any curved motion, is analyzed in detail in the sequel.

Two control problems of the Rex platform moving with
all possible slips is studied: the motion planning problem and
the trajectory tracking problem. The motion planning prob-
lem consists in defining a control steering the platform to a
desired position and orientation. This control produces a refer-
ence trajectory of motion of the platform. Given the reference
trajectory, the trajectory tracking problem determines a con-
trol able to track the reference. The motion planning problem
can be solved either by means of the Endogenous Configura-
tion Space Approach (ECSA), [19,20] or the classical Optimal
Control Approach (OCA). The trajectory tracking problem is
solved using the Nonlinear Model Predictive Control (NMPC)
method [21]. An advantage of the predictive control results
from its robustness to the incomplete knowledge of the plat-
form dynamics, particularly the traction/reaction and friction
parameters. Both the OCA as well as NMPC are implemented
with the use of the ACADO (Automatic Control and Dynam-
ic Optimization) software package [22], dedicated to this type
of problems. Performance of the proposed control algorithms
is illustrated on a sort of parking problem. To reveal the ro-
bustness of the predictive control, the algorithm is applied in
the case when the real platform parameters differ substantially
from the nominal ones. Recently, a comprehensive overview
of modeling and control issues of wheeled mobile robots has
been presented in the monograph [23]. Due to their outstand-
ing applied dimension, results of this monograph may appear
of vital significance at the implementation stage of our ap-
proach.

This study is organized in the following way. Section 2 in-
troduces a control theoretic model of the platform dynamics.
Three variants of the platform motion are specified in Sec. 3.
In Sec. 4 two control problems: the motion planning problem
and the trajectory tracking problem are defined, along with
suitable control algorithms. Section 5 gathers computational
results. Section 6 contains conclusions.

2. Dynamics equations

The Rex platform has been intended to serve as a tool for
implementing and testing model-based motion control algo-
rithms. The platform’s geometric schematic is displayed in
Fig. 2. is a 4-wheel, skid-steering type mobile platform. Its
wheels are identical, and can either be steered independent-
ly or coupled sidewise. In what follows it is assumed that
the left and the right wheels of the platform have been cou-
pled and are actuated by the same motor. The platform mo-

tion is described with respect to the global reference frame
(X0, Y0, Z0) with Z-axis pointing upward. The local frame
(X, Y, Z) is placed in the middle of the platform rear axle,
with Z-axis pointing upward and X-axis set along the plat-
form, directed forward. Having defined the left and right
wheel rotation angles θ1 = θ2 = θ12 and θ3 = θ4 = θ34,
we obtain a vector of generalized coordinates of the platform
q = (x, y, ϕ, θ12, θ34)

T ∈ R
5 consisting of the position of the

middle point of the platform rear axle, the platform orienta-
tion, and the rotation angles of the wheels, cf. Fig. 2. In order
to obtain the dimensional consistency of the coordinates, we
represent the vector of generalized coordinates in the form
w = (x, y, aϕ, Rθ12, Rθ34)

T
, with R denoting the wheel ra-

dius, and a being the distance between the platform rear and
front axes. It is easily seen that the Pfaffian matrix related to
the lateral and longitudinal slips of the platform wheels takes
the following form

H(w)=
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Fig. 2. Rex platform: geometric schematic

Subsequent rows of the matrix (1) define four possible
slips of the platform wheels:

• the lateral slip of rear wheels s1 = H1(w)ẇ,
• the lateral slip of front wheels s2 = H2(w)ẇ,
• the longitudinal slip of left wheels s3 = H3(w)ẇ,
• the longitudinal slip of right wheels s4 = H4(w)ẇ.

Consequently, the identity of the form

Hi(w)ẇ = 0, i = 1, 2, 3, 4,

describes the motion of the platform without a corresponding
slip. By assuming that this identity holds for 4, 3, 2, 1 or 0
rows out of the four of the Pfaffian matrix (1), we arrive at
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admissible variants of motion of the Rex platform. In partic-
ular, the condition H(w)ẇ = 0 refers to the totally slip-less
motion, whereas 0ẇ = 0 means allowing for all possible slips.

For a further reference we shall encode every variant of
motion by a 4-digit binary number α = α1α2α3α4, αi = 0, 1,
in such a way that αi = 1 means that the i-th motion con-
straint Hi(w)ẇ = 0 is enabled, while αi = 0 disables this
constraint. Each number α determines a sub-matrix Hα(w)
of the Pfaffian matrix, consisting of rows corresponding to the
positions of non-zero digits in α. Specifically, if α = 0101
then

Hα(w) =

[

H2(w)

H4(w)

]

,

so Hα(w)ẇ = 0 means the motion without the lateral slip of
the front wheels and without the longitudinal slip of the right
wheels of the platform.

Assuming that the platform Rex moves on the horizontal
plane, and that the wheels touch the ground point-wise, its
dynamics can be represented by the following control system

P (w)ẅ + D(w, ẇ) = F (w, ẇ) + B(w)u, y = k(w). (2)

In the above equations P (w) denotes the inertia matrix,
D(w, ẇ) refers to centripetal and Coriolis forces, F (w, ẇ) =
Ff (w, ẇ) + Ft(w, ẇ) + Fs(w, ẇ) describes friction, traction
and slip reaction forces at the contact points of the wheels
with the ground, B(w) = 1

R
[02×3, I2]

T is the control ma-
trix. The control inputs u = (u1, u2)

T ∈ R
2 have the sense

of torques exerted by the motors on the coupled left and right
wheels. The output function k(w) = (w1, w2,

w3

a
)T provides

the platform’s position and orientation. The following form of
P (w) and D(w, ẇ) has been found

P (w) =
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(3)

where

Q11 = Q22 = mp + 4mw, Q44 = Q55 = 2Iw33,

Q13 = −mp

(

ap1 sin
w3

a
+ ap2 cos

w3

a

)

− 2mwa sin
w3

a
,

Q23 = mp

(

ap1 cos
w3

a
− ap2 sin

w3

a

)

+ 2mwa cos
w3

a
,

Q33 = Ip33 + mp(a
2
p1 + a2

p2) + 4(Iw11 + mwb2) + 2mwa2.

The symbols used above have the following meaning: mp,
mw – mass of the platform and of a single wheel, ap1 and
ap2 – position of the platform mass center in the local frame,
Iw11, Iw33 – wheel’s moments of inertia with respect to Y
and Z axis of the local frame, Ip33 – the platform moment
of inertia with respect to Z axis of the local frame, a, b - the
length and the width of the platform, R – the radius of each
wheel.

The generalized forces standing on the right hand side of
the dynamics Eq. (2), beyond controls, contain the generalized
friction, traction and slip reaction forces. The friction forces
describe the transmission of actuating torques from the mo-
tors to the wheels as well as all the other kinds of friction. In
the simplest case it may be assumed that

Ff (w, ẇ) = (0, 0, 0 − γ1ẇ4,−γ2ẇ5)
T ,

where γi > 0 denote the viscous friction coefficients. Acting
solely on the actuated generalized coordinates, the friction
forces can be compensated by a feedback, so in what follows
they are omitted. Concerning the traction and reaction forces,
suppose that the Pfaffian motion constraints imposed on the
platform have the form Hα(w)ẇ = 0, for a certain α. Then,
according to the d’Alembert principle, the generalized traction
forces take the form

Ft(w, ẇ) = Hα T (w)λα,

λα denoting a Lagrange multiplier. As far as α 6= 1111, some
slips of the wheels appear. Assume temporarily that not all
slips are allowed, so also α 6= 0000. Let sj = Hj(w)ẇ de-
note an admissible slip. It is assumed that the presence of this
slip induces at the contact point of the wheel with the ground
a reaction force rj = −βjsj = −βjH

j(w)ẇ proportional to
the slip and counteracting the slip. Since the slips have the
sense of velocities, this means that the slip reaction acts like a
linear dumper. The slip reaction coefficients βj depend on the
normal force Ni exerted by the wheel i on the ground, and on
the properties of the ground at the contact point, specifically,
β1 = ε1N1 + ε4N4, β2 = ε2N2 + ε3N3, β3 = τ1N1 + τ2N2,
and β4 = τ3N3 + τ4N4, where εi, τi refer, respectively, to
the lateral and the longitudinal slip of the wheel i. Given
the force rj , the corresponding generalized slip reaction force
Fs j(w, ẇ) can be found using the virtual work principle. Sup-
posing that rjsj = rjH

j(w)ẇ = FT
s j(w, ẇ)ẇ, we conclude

that Fs j(w, ẇ) = Hj T (w)rj . Given α = α1α2α3α4, we de-
fine α = α1α2α3α4, where αi is the negation of αi. It is easi-
ly checked that, if the traction forces Ft(w, ẇ) = Hα T (w)λα

then the generalized slip reaction forces can be written down
as

Fs(w, ẇ) = Hα T (w)rα,

for

rα = −diag{βα}H
α(w)ẇ,

where diag{βα} is a diagonal matrix. Summarizing the above
assumptions, for a given variant of motion α, the dynamics
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equations of the Rex platform can be represented in the fol-
lowing form
{

P (w)ẅ+D(w, ẇ)=Hα T (w)λα+Hα T (w)rα+B(w)u,

y = k(w).
(4)

The Pfaffian constraints Hα(w)ẇ = 0 represent the platform
kinematics in the α variant of motion, and are tantamount to
a driftless control system

ẇ = Gα(w)ηα,

where Gα(w) is a matrix whose columns span the null
space of Hα(w), and ηα has a suitable dimension. Since
Hα(w)Gα(w) = 0, it follows that by multiplying the dy-
namics Eqs. (4) from the left by Gα T (w) we can eliminate
the traction forces. Furthermore, after a substitution of ẅ in
(4) by Ġα(w)ηα +Gα(w)η̇α, we obtain the following motion
equations in the α variant of motion






















ẇ=Gα(w)ηα

η̇α =
(

Gα T (w)P (w)Gα(w)
)

−1
Gα T (w)

(

P (w)Ġα(w)ηα−D(w, ẇ)+Hα T (w)rα+B(w)u
)

,

y = k(w), rα = −diag{βα}H
α(w)ẇ.

(5)

Having solved these equations for w, the traction forces are
computed from (4) as

Ft(w, ẇ) = P (w)ẅ +D(w, ẇ)−Hα T (w)rα −B(w)u. (6)

3. Specification

In this section we shall specify the motion Eqs. (5) of the Rex
platform to three example variants of motion.

3.1. No slip permitted, α = 1111. In this case the platform
motion satisfies full Pfaffian constraints (1), so Hα(w) =
H(w), whereas Hα(w) = 0, so the slip reaction forces are ab-

sent. Since Gα(w) =
(

cos w3

a
, sin w3

a
, 0, 1, 1

)T
, then ηα ∈ R,

and the kinematics part of (5) takes the form

ẇ =
(

cos
w3

a
, sin

w3

a
, 0, 1, 1

)T

ηα.

In particular, this implies that ẇ3 = 0, i.e. the platform moves
along a straight line, with a fixed orientation. Consequently,
we get D(w, ẇ) = 0, Ġα(w) = 0, and conclude that the dy-
namics part of the platform motion is governed by a single
equation

η̇α =
1

Q11R +
2Q44

R

(u1 + u2).

As can be seen, altogether the platform motion is determined
by 6 differential equations. The traction forces are defined by
suitably modified (6). It follows that the traction forces act at
the contact points of wheels with the ground, in the direction
parallel or perpendicular to the the wheel axle. Therefore, as
long as these forces are less than the static friction forces at
the contact points, the platform motion remains within the
variant α = 1111. Increasing the control torques results in

the situation when the friction is no longer able to provide
sufficient traction, so the variant of platform motion changes,
e.g. both the rear and the front wheels start to slip lateral-
ly, α = 0011. By design, forcing a lateral slip is necessary
to change the orientation of the Rex platform. This case is
studied in more detail in the next subsection.

3.2. Lateral slips permitted, α = 0011. We have the motion
without longitudinal slips, so the motion constraints become
Hα(w)ẇ = 0, where

Hα(w) =
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a
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a
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a
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a
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.

Consequently, we have
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Having computed
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,

we obtain the motion equations of the platform in the form






























ẇ = Gα(w)ηα

η̇α =
(

Gα T (w)P (w)Gα(w)
)

−1
Gα T (w)

(

P (w)Ġα(w)ηα − D(w, ẇ) + Hα T (w)rα + B(w)u
)

,

y = k(w),

where ηα ∈ R
3, and rα = −βαHα(w)ẇ, for βα =

diag{β1, β2}.
The system of equations of motion is 8-dimensional. If,

additionally, the traction forces necessary to prevent longitu-
dinal slips are bigger than the corresponding friction forces
at the contact points of the wheels with the ground, the plat-
form passes to the variant of motion with all slips permitted,
characterized by α = 0000.

3.3. All slips permitted, α = 0000. In this type of mo-
tion, there act only the slip reaction forces at the contacts
of wheels with the ground. We have Hα(w) = 0, therefore
Gα(w) = I5. Also, Hα(w) = H(w), ηα ∈ R

5, λα = 0, so
the motion equations take the form











ẇ = ηα

P (w)η̇α + D(w, ẇ) = −HT (w)βH(w)ẇ + B(w)u,

y = k(w),

where the diagonal matrix β = diag{βi} collects all the slip
reaction coefficients considered in Sec. 2. The motion equa-
tions are 10-dimensional. Observe that the control torques are
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transmitted to the position and orientation coordinates only
through the slip reactions.

4. Control

It has been shown in Sec. 2 that the platform motion can be
described by a collection of 16 systems of equations of the
form (5) involving two control inputs, each labelled by an
α, switched on and off in time. Either the number of vari-
ables appearing in these equations, varying from 6 to 10, or
the switching times are not known a priori, but depend on
the history of motion/actuation. The presence of autonomous
switching in the motion equations makes the control and mo-
tion planning of the Rex platform extremely hard. On the
other hand, it may be expected that not all variants of motion
are equally meaningful from a practical point of view. Specif-
ically, it seems that two limit variants are most significant,
namely those described by α = 1111 and α = 0000. As has
been shown in the previous section, the former case is easy,
tantamount to controlling a simple linear control system. For
this reason, below we shall focus on the latter case, whose
motion equations are represented by a control affine system
with output function. Specifically, the motion Eqs. (2) yield

ẋ = f(x) + g(x)u = f(x) +

m
∑

i=1

gi(x)ui, y = k(x), (7)

where
x = (w, ẇ) = (x1, x2) ∈ R

10,

g(x) =
[

05×2, P−1(x1)B
]

,

and

u ∈ R
2, f(x) =

(

x2, P−1(x1)(−D(x) + F (x))
)

.

By definition, all vector fields and functions appearing in (7)
are smooth. Let T > 0 denote a control time horizon.
Suppose that admissible control functions belong to the
Hilbert space L2

m[0, T ] equipped with the inner product

〈u1(·), u2(·)〉 =
∫ T

0
uT

1 (t)u2(t)dt. The space of control func-
tions X = L2

m[0, T ] is referred to as the endogenous configu-
ration space. Let for the given control u(·), x(t) = ϕx0,t(u(·))
be the state trajectory of the control system initialized at x0.
The corresponding output trajectory y(t) = k(x(t)). Then,
the end point map of the system (7)

Kx0,T (u(·)) = k(x(T )) = k(ϕx0,T (u(·))) (8)

determines the system output response at T to the control
function u(·).

4.1. Motion planning. Given the system (7), we shall study
the following motion planning problem for the mobile plat-
form subject to slipping: given a desired point yd in the
task space, the initial state x0 and a time horizon T , find
a control function ud(t), such that the system output, starting
from an initial point y0 = k(x0), reaches the desired point
Kx0,T (ud(·)) = yd.

Endogenous Configuration Space Approach. The motion
planning problem can be solved by a Jacobian motion plan-
ning algorithm derived within the Endogenous Configuration
Space Approach (ECSA), [19]. This derivation can be sum-
marized as follows. We start from an arbitrarily chosen initial
control function u0(·) ∈ X . If this function solves the prob-
lem, we are done. Otherwise, (i.e. when Kx0,T (u0(·)) 6= yd)
we look for a differentiable curve uθ(·), θ ∈ R in X , pass-
ing through u0(·), such that the task space error e(θ) =
Kx0,T (uθ(·)) − yd along this curve decreases exponentially
along with θ, with a prescribed rate of error decay γ > 0, i.e.
de(θ)

dθ
= −γe(θ). After differentiating the error with respect

to θ, we arrive at the identity

D Kx0,T (uθ(·))
duθ(·)

dθ
=Jx0,T (uθ(·))

duθ(·)

dθ
=−γe(θ), (9)

where v(·) ∈ X . The operator

Jx0,T (u(·))v(·)=ρ(T )=C(T )

T
∫

0

Φ(T, s)B(s)v(s)ds (10)

is called the Jacobian of the system (7) at the endogenous
configuration u(·). For a given v(·), the Jacobian (10) deter-
mines the value at time T of the output ρ(t) of the linear
approximation

ξ̇(t) = A(t)ξ(t) + B(t)v(t), ρ(t) = C(t)ξ(t), ξ(0) = 0,
(11)

to the system (7) along the control-trajectory pair (u(t), x(t)).
This implies that the system matrices need to be computed as

A(t) =
∂(f(x(t)) + g(x(t))u(t))

∂x
,

B(t) = g(x(t)), C(t) =
∂k(x(t))

∂x
,

while the transition matrix Φ(t, s) is a solution of the differ-
ential equation

∂Φ(t, s)

∂t
= A(t)Φ(t, s)

passing through Φ(s, s) = I10. By plugging into (9) a right
inverse J#

x0,T (u(·)) of the Jacobian (10), we obtain a Jacobian
motion planning algorithm that provides a solution to the mo-
tion planning problem as the limit ud(t) = limθ→+∞ uθ(t)
of the solution of the functional differential equation

duθ(·)

dθ
= −γJ#

x0,T (uθ(·))(Kx0,T (uθ(·)) − yd), (12)

initialized at uθ=0(t) = u0(t). Customarily, the Moore-
Penrose Jacobian inverse is used that gives the Eq. (12) the
form

duθ(t)

dθ
= −γBT

θ (t)ΦT
θ (T, t)CT

θ (T )G−1
x0,T (uθ(·))

· (Kx0,T (uθ(·)) − yd),

(13)

where the subscript θ means that the corresponding ob-
ject needs to be computed along the control-trajectory pair
(uθ(t), xθ(t)). The matrix Gx0,T (u(·)) standing in (13) is the
output Gram matrix of the linear approximation (11), referred
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to as the mobility matrix of the system (7), [24]. This ma-
trix can be computed by integrating the Lyapunov differential
equation

Ṁ(t) = B(t)BT (t) + A(t)M(t) + M(t)AT (t), (14)

with M(0) = 0, and setting Gx0,T (u(·)) =
C(T )M(T )CT (T ). The Moore-Penrose Jacobian algorithm
works outside singular endogenous configurations at which
the mobility matrix gets singular. The presented Jacobian mo-
tion planning algorithm refers to the unconstrained problem.
To deal with a motion problem with constraints this algorithm
may be extended to either the imbalanced Jacobian [25] or
the prioritized Jacobian algorithm [20].

The functional differential Eq. (13) can be solved
using a finite trigonometric (Fourier) parametrization of
the control functions, i.e. by setting uλ(t) = Ps(t)λ,
with Ps(t) = diag{P (t), P (t)} denoting a block diago-
nal matrix built of 2 copies of the row matrix P (t) =
[1, sinωt, cosωt, . . . , cos pωt], ω = 2π/T , containing 2p + 1
basic functions, s = 2(2p + 1). The vector λ ∈ R

s con-
tains control parameters. The dimension s of the control space
should be at least equal to the number of output coordinates
in (7). After the parametrization of control functions, the Ja-
cobian operator (10) converts to the matrix

Jx0,T (λ) = Cλ(T )

T
∫

0

Φλ(T, t)Bλ(t)Ps(t)dt (15)

defined along the control-trajectory pair (uλ(t), xλ(t)). It
is easily seen that the parametric Jacobian Jx0,T (λ) =
Cλ(T )Jλ(T ), where Jλ(t) solves the differential equation

J̇λ(t) = Aλ(t)Jλ(t) + Bλ(t)Ps(t), (16)

with initial condition Jλ(0) = 0. In the parametric setting and
after applying the Euler scheme of integration, the Jacobian
algorithm (13) gets equivalent to the updating of the control
parameters

λθ+1 =λθ−γJT
x0,T (λθ)G

−1
x0,T (λθ)(Kx0,T (λθ) − yd),

θ = 0, 1, . . . ,
(17)

starting from a certain λ0, where the parametric mobility ma-
trix Gx0,T (λ) = Jx0,T (λ)JT

x0,T (λ). The solution of the mo-
tion planning problem in the parametric setting is given as
ud(t) = Ps(t)λd, where λd = limθ→+∞ λθ.

Optimal Control Approach. Alternatively, a motion plan-
ning algorithm can be designed on the basis of the Optimal
Control Approach (OCA). To this aim, the motion planning
problem for system (7) is formulated as an optimal control
problem with quadratic objective function

Jp(u(·), x0) =

T
∫

0

(

(y(t) − yd)
TPp(y(t) − yd)

+ u(t)TRpu(t)
)

dt,

(18)

involving symmetric matrices Pp ≥ 0 and Rp > 0. Ad-
ditionally, some constraints can be imposed, in the form

s(x(t), u(t)) ≤ 0 or r(x(0), x(T )) ≤ 0, where the first in-
equality refers to the system’s state trajectory and control,
and the second sets up the accuracy of reaching the desired
output. Numerical solution of the motion planning problem
within OCA can be obtained by means of the methods of
sequential quadratic programming and direct multiple shoot-
ing implemented in the ACADO software package [26]. The
computations result in a control function ud(t) that solves the
motion planning problem with prescribed accuracy. A sub-
stitution of this control to the system (7) allows to find a
corresponding state trajectory xd(t) and an output trajecto-
ry yd(t). The latter serves as the reference trajectory in the
trajectory tracking problem.

4.2. Tracking. Because the motion of the Rex platform takes
place on a finite time interval, the trajectory tracking problem
is defined in the following way: For a given reference output
trajectory yd(t) of the system (7), find a control u(t), such
that the corresponding trajectory y(t) stays close to the refer-
ence in a certain measurable sense. Specifically, the tracking
problem can be formulated as the optimal control problem,
with objective function

Js(u(·), x0) =

T
∫

0

(

(y(t) − yd(t))
TPs(y(t) − yd(t))

+ u(t)TRsu(t)
)

dt,

(19)

containing symmetric matrices Ps ≥ 0, Rs > 0, and pos-
sibly including additional constraints imposed on the control
functions. The control computed as a solution of the optimal
control problem is by definition an open loop control, unable
to cope with ubiquitous in practical situations modeling er-
rors and measuring disturbances. A control strategy that joins
the optimal control and the feedback control is the predictive
control. Suppose that we have a real system and its model
that takes the form of the nominal system (7). Due to mod-
eling and measuring errors the optimal control computed for
the nominal system may not guarantee the tracking in the re-
al system. The Nonlinear Model Predictive Control (NMPC)
consist in repeatedly solving the optimal control problem (19)
in the system (7), over a time horizon tpred ≤ T called the
prediction time, and then applying this optimal control to the
real system over the control time tcontr ≤ tpred, then comput-
ing the system current state/output, and finally resuming the
optimal control problem (19) in the nominal system initialized
by the the actual state/output of the real system. In this way
the nominal model is used only over the control time, while
the resulting control is updated systematically by the state of
the real system in a way characteristic to the feedback control.
For computational reasons the prediction time is divided in-
to a number of subintervals on which the control is assumed
constant, and the control time is taken as one of these inter-
vals. Obviously, for tcontr = tpred = T the predictive control
gets equivalent merely to the optimal control with the objec-
tive function (19). Similarly as in Subsec. (OCA), the NMPC
solution of the trajectory tracking problem can be obtained by
employing the ACADO package.
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5. Simulation results

In this section we shall solve a motion planning problem and
a trajectory tracking problem for the Rex platform, using the
methods outlined in the previous section. The platform mo-
tion variant is α = 0000, so that the system (7) is defined
by the platform dynamics equations derived in Subsec. 3.3.
A computation supported by the Autodesk Inventor 3D CAD
software package provided the following values of the Rex
platform parameters [27]: mp = 21.107 kg, mw = 2.380 kg,
ap1 = 0.377 m, ap2 = 0.008 m, a = 0.730 m, b = 0.350 m,
R = 0.127 m, Ip33 = 1.991 kgm2, Iw11 = 0.015 kgm2,
Iw33 = 0.009 kgm2. The slip reaction force coefficients are
set to ǫi = 1, τi = 1.3, i = 1, 2, 3, 4, and the normal forces
exerted by each wheel are assumed the same.

5.1. Planning. The following motion planning problem is ex-
amined: Given the initial state x0 = (0, 0, aπ

2 , 01×7)
T , and the

time horizon T = 8, find a control ud(t) ∈ R
2 driving the

platform to the desired point yd = (10, 0, aπ
2 )T . This problem

is a sort of the parking manoeuvre.

ECSA. Firstly, the motion planning is solved by means
of the algorithm (17). The controls are chosen in the
form of truncated trigonometric series containing the con-
stant and up to the 3rd order harmonics. The vec-
tor of initial values of the control parameters λ0i =
(0.5, 0.01, 0.01, 0.001, 0.001, 0.0001, 0.0001)T , i = 1, 2. The
error decay rate is set to γ = 1, and the computations are
terminated when the error norm ||y(T ) − yd|| ≤ 10−4. The
computation results are shown in Fig. 3. They present the plat-

Fig. 3. Motion planning, ECSA: platform path, orientation, controls, lateral slips, longitudinal slips
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form path, its orientation, controls, and slips. In order to vi-
sualize the effect of wheel slips, the platform orientation has
been marked along the motion path. In the figure the original
coordinates q are used instead of w, and the slips renamed
as s1 = s14, s2 = s23, s3 = s12, s4 = s34. Observe that
the slips at T do not vanish, since the platform has not been
requested to stop at the destination point.

OCA. Next, the same motion planning problem is solved us-
ing OCA. In the objective function (18) the unit matrices
Pp = I3 and Rp = I4 have been chosen, and constraints on
the platform linear velocity and control torques imposed in
the form
√

ẇ2
1(t) + ẇ2

2(t) ≤ 1.5 m/s and |u1(t)|, |u2(t)| ≤ 16 Nm.

The accuracy of reaching the desired point is |y1(T ) −
yd1|, |y2(T ) − yd2| ≤ 0.01, |y3(T ) − yd3| ≤ 0.05. The re-
sulting platform path and controls are displayed in Fig. 4.

Fig. 4. Motion planning, OCA: platform path, controls

5.2. Tracking. The reference trajectory yd(t) has been tak-
en as computed in Subsec. (OCA). The NMPC algorithm is
employed, described in Subsec. 4.2, with the prediction time
tpred = 1 s, and the control time tcont = 25 ms. In the
objective function (19) we set Ps = diag{100, 100, 10} and
Rs = 0.001I4. The control bounds are |ui(t)| ≤ 16 Nm,
i = 1, 2. The result of tracking yd(t) is presented in Fig. 5.
This solution corresponds to the nominal parameters of Rex.
For the purpose of demonstration of the robustness of pre-
dictive control against modeling errors, the predictive con-
trol algorithm has been applied in order to track the trajec-
tory yd(t) in three perturbed systems. One of them has zero
off diagonal elements of the inertia matrix (3) (so the term
D(w, ẇ) vanishes), in two other the slip reaction force co-
efficients are deviated by ±50 percent of their nominal val-
ues, at the nominal inertia matrix. In all the computations
the platform starts from a point at the desired trajectory.
Results are shown in Figs. 6–8. Despite considerable mod-
el deficiencies, the NMPC tracking turns out to be satisfac-
tory.

5.3. Efficiency of computations. The computations have
been run on a PC with Intel Core i5 2.30GHz processor. The
solution of the motion planning problem using ECSA shown
in Fig. 3 (γ = 1) was found in 44s. Using OCA and the
ACADO simulation environment, the motion planning prob-
lem was solved in 83 s. Observe that the solutions provided by
ECSA and OCA are completely different. These computation
times, however, are not very critical as the motion planning
problem need not be solved on line. The computation times
of the solution of trajectory tracking problems varied between
282 s and 743 s, depending on the problem. This might sug-
gest that presented algorithms and their ACADO implementa-
tion are not suitable for real time control of the Rex platform.
However, it should be noticed that for the generic implementa-
tion of the optimal control in ACADO these times include not
only the integration time of the model of the control system
residing inside the controller, but also the simulation time of
the controlled object. This situation may be alleviated by us-
ing the ACADO Code Generation tool, able to automatically
generate an optimized and highly efficient C code dedicated
to a specific NMPC controller. In our computations it was as-
sumed that the control time tcontr = 25 ms, so for a real time
control new values of controls need to be computed every
25 ms. The controller based on the generated C code needs
approximately 12 ms to do this, making the NMPC real time
control of the Rex platform entirely possible. Similarly, the
code generation can speed up solving the motion planning
problem, and reduce the computation time to approximate-
ly 2 s.
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Fig. 5. Tracking, the nominal parameters: platform path, tracking errors, controls

Fig. 6. Tracking, Q13 = Q23 = 0: platform path, tracking errors, controls
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Fig. 7. Tracking, ǫi, τi decreased by 50 percent: platform path, tracking errors, controls

Fig. 8. Tracking, ǫi, τi increased by 50 percent: platform path, tracking errors, controls
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6. Conclusions

We have studied modeling and control of the skid-steering
Rex mobile platform. Depending on possible slip conditions
of the wheels 16 variants of platform motion have been distin-
guished, dynamics equations for each variant provided. Spe-
cial attention has been paid to the platform motion with all
slips permitted. In this case the motion planning and the tra-
jectory tracking problems have been addressed. Two motion
planning algorithms have been proposed, one based on the
Endogenous Configuration Space Approach, the other being
an optimal control algorithm. In order to solve the tracking
problem the Nonlinear Model Predictive Control has been
used. Performance of these algorithms has been illustrated on
an example of the parking problem. Remarkable robustness of
the tracking algorithm has been demonstrated. In the compu-
tations of the optimal control as well the predictive control the
ACADO software package has been exploited. A practically
important advantage of ACADO is a possibility of generating
a code that can be used as a tool for real time control of the
Rex platform.

A part of this study devoted to the modeling of the Rex
platform resulted in defining a switched control system with
dynamic switching among 16 modes of operation. The mo-
tion planning and tracking control of such systems seems to
be an open problem. Furthermore, the switching conditions,
although well-defined theoretically, may appear difficult to de-
tect in the real system. Taking this into account as well as for
practical reasons we have concentrated on the motion with
all slips of wheels allowed. These slips have been described
directly as the velocities of the wheel’s contact point with the
ground, and the expression for the slip reaction forces is pat-
terned on the recent proposals [13, 14], formally resembling
the classical Burkhardt’s formula [9]. A simplified, linear de-
pendence of these forces on the slips is exploited. Correctness
of this assumption needs to be verified experimentally, and
if necessary, the full nonlinear model will be adopted. The
motion planning and control algorithms of Rex are model-
based. This means that when the design of Rex is completed,
the final model parameters should be determined by means
of an identification procedure. The tracking control of Rex
is subordinated to the NMPC paradigm, whose robustness
against incomplete knowledge of the model, and potential re-
al time computability using ACADO tools has been confirmed
in computer simulations. An experimental verification of this
property, especially in connection with the state estimation of
the Rex platform, is planned for the next future. These exper-
iments will employ a dedicated the ROS-based programming
framework that has already been implemented on Rex. Their
results will be reported in a separate publication.
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