PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural, electrical, thermal and tribological studies of copper-fly ash composites through powder metallurgy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research work address the fabrication of copper (Cu) matrix composites, reinforced with fly ash (FA) particulates with 3, 6, 9 and 12 wt.% using the powder metallurgy route. The microstructural, physical, electrical, thermal, mechanical and tribological properties of thus fabricated Cu-FA composites have been studied. Optical microstructural characterization of the composites exposed persuasively uniform distribution of FA reinforcement with minimum porosity. The mixed powder SEM images revealed the homogeneous dispersion of fly ash particulates in the copper matrix. The hardness values showed improvement with increase in the weight percentage of FA in the Cu matrix. Electrical conductivity was measured using the four-point probe method at room temperature. Thermal conductivity was measured with a thermal diffusivity analyzer at room temperature. The fly ash addition leads to weakening the conductivity of Cu-FA composites. The tribological properties of Cu-FA composite specimens were investigated using a Pin-on-disc tribo testing machine against an EN81 steel contour disc. The specific wear rate of the composites tended first to decrease, which was attributed mainly to the formation of a mechanically mixed layer on the worn surface. Then it would increase as the FA content increased because of reduction in ductility and brittle oxide cracks associated with adding more FA particulates. It seems that composites with FA percentages below 9wt.% have optimum properties of microstructure, hardness and wear resistance, which is suitable for applications such as electrical sliding contacts, electrical discharge machining and spot welding electrodes.
Rocznik
Strony
935--940
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., tab.
Twórcy
  • Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Madurai-625701, Tamilnadu, India
autor
  • Department of Mechanical Engineering, K.L.N College of Engineering, Madurai-630612, Tamilnadu, India
  • Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Madurai-625701, Tamilnadu, India
  • Department of Mechanical Engineering, Chandigarh College of Engineering and Technology, Chandigarh-160019, India
Bibliografia
  • [1] M. Bravunovic, V.V. Konchits, and N.K. Myshkin. Electrical contacts: fundamentals, applications and technology. 1st ed. New York: CRC Press; 2007.
  • [2] K. Surekha and A. Els-Botes, Development of high strength, high conductivity copper by friction stir processing, Materials and Design 32 (2011) 911–916
  • [3] M.X. Guo, K. Shen, and M.P. Wang, Effect of in situ reaction conditions on the microstructure changes of Cu–TiB2 alloys by combining in situ reaction and rapid solidification, Mater. Chem. Phys., 131, 589–599 (2012).
  • [4] Y.S. Mun, Y. Yoon, J. Hur, M.S. Park, J. Bae, J.H. Kim, Y.S. Yoon, I.S. Yoo, S.G. Lee, and I.T. Kim, Copper–antimony–red phosphorus composites as promising anode materials for sodium-ion batteries, Journal of Power Sources 362,(2017), 115‒122
  • [5] B.-W. Ahn, J.-H. Kim, K. Hamad, S.-B. Jung, Microstructure and mechanical properties of a B4C particle-reinforced Cu matrix composite fabricated by friction stir welding, Journal of Alloys and Compounds, 693, 688–691(2017).
  • [6] J.-K. Xiao, W. Zhang, L.-M. Liu, L. Zhang, and C. Zhang. Tribological behavior of copper-molybdenum disulfide composites. Wear 384–385 (2017) 61–71.
  • [7] H.R. Akramifard, M. Shamanian, M. Sabbaghian, and M. Esmailzadeh, Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing, Mater.Des., 54, 838–844 (2014).
  • [8] C. Zou, H. Kang, W. Wang, Z. Chen, R. Li, X. Gao, T. Li, and T. Wang, Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites, Journal of Alloys and Compounds 687 (2016) 312‒319
  • [9] R. Sathiskumar, N. Murugan, I. Dinaharan, and S.J. Vijay, Fabrication and characterization of Cu/B4C surface dispersion strengthened composite using friction stir processing, Archives of Metallurgy and Materials 59 (2014) 83–89.
  • [10] T. Wang, C. Zou, Z. Chen, M. Li, W. Wang, R. Li, and H. Kang, In situ synthesis of TiB2 particulate reinforced copper matrix composite with a rotating magnetic field, Materials and Design 65 (2015) 280–288
  • [11] G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite, Journal of Alloys and Compounds 509 (2011) 6036–6042.
  • [12] X. Zhou, D. Yi, L. Nyborg, Z. Hu, J. Huang, and Y. Cao, Influence of Ag addition on the microstructure and properties of copper-alumina composites prepared by internal oxidation, Journal of Alloys and Compounds 722 (2017) 962 – 969
  • [13] Y. Zhang, J.M. Shockley, P. Vo, and R.R. Chromik, Tribological behavior of a cold sprayed Cu–MoS2 composite coating during dry sliding wear, Tribol. Lett. 62 (2016) 9.
  • [14] S. Huang, Y. Feng, H. Liu, K. Ding, and G. Qian, Electrical, sliding friction and wear properties of Cu-MoS2-graphite-WS2 nanotubes composites in air and vacuum conditions, Materials Science & Engineering A 560 (2013) 685–692
  • [15] M. Sabbaghiana, M. Shamanian, H.R. Akramifarda, and M. Esmailzadeh, Effect of Friction stir processing on the microstructure and mechanical properties of Cu – TiC composite, Ceram. Int., 40, 12969–12976 (2014).
  • [16] J. Khosravi, M. Kazem B. Givi, M. Barmouz, and A. Rahi, Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing, Int. J. Adv. Manuf. Technol., 74,1087–1096 (2014).
  • [17] H. Wang, Z.-H. Zhang, H.-M. Zhang, Z.-Y. Hu, S.-L. Li, and X.-W. Cheng, Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes, Materials Science and Engineering: A 696, (2017) 80‒89.
  • [18] H. Cao, Z. Qian, L. Zhang, J. Xiao, and K. Zhou, Tribological behavior of Cu matrix composites containing graphite and tungsten disulfide, Tribology Transactions, 57:6(2014), 1037‒1043.
  • [19] N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, and P.V. Venkitakrishnan, Processing and characterization of spark plasma sintered copper/carbon nanotube composites, Materials Science and Engineering: A, 682, (2017), 229‒237.
  • [20] I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, and J. Paulo Davim, Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing, Journal of Alloys and Compounds Volume 718, (2017), 150‒16
  • [21] P. Balamurugan and M. Uthayakumar (2014): Influence of Process Parameters on Cu-Fly Ash Composite by Powder Metallurgy Technique, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2014.984220
  • [22] G.H.A. Bagheri, The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles, Journal of Alloys and Compounds, 676, (2016), 120‒126.
  • [23] P. Narayanasamy, N. Selvakumar. Tensile, Compressive and Wear behaviour of self-lubricating sintered magnesium based composites, Transactions of Nonferrous Metals Society of China, 27 (2017) 312‒323.
  • [24] M. Yusoff; Zuhailawati Hussain. Effect of Sintering Parameters on Microstructure and Properties of Mechanically Alloyed Copper-Tungsten Carbide Composites. International Journal of Materials, Mechanics and Manufacturing 2013, 1(3), 283‒286.
  • [25] S.C. Vettivel, N. Selvakumar, N. Leema, and A. Haiter Lenin, “Electrical resistivity, Wear map and modelling of extruded tungsten reinforced copper composite”, Materials and Design, 156, 791‒806 (2014).
  • [26] S. M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, and H.-J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Composites Science and Technology 70 (2010) 2253–2257
  • [27] J. Kovacik, S. Emmer, and J. Bielek, Thermal conductivity of Cu–graphite composites, Int. J. Therm. Sci. 90 (2015) 298–302.
  • [28] W. Yang, L. Zhou, K. Peng, J. Zhu, and L. Wan, Effect of tungsten addition on thermal conductivity of graphite/copper composites, Compos. Part B Eng. 55 (2013) 1–4.
  • [29] S. H. Lee, S. Y. Kwon, and H. J. Ham, Thermal conductivity of tungsten–copper composites, Thermochimica Acta 542 (2012) 2– 5.
  • [30] J. Winzer, L. Weiler, J. Pouquet, and J. Rödel, Wear behaviour of interpenetrating alumina–copper composites, Wear (271), Issues 11–12, (2011), 2845‒2851.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8b007c7-f435-4d6a-8e6e-b6aedab6a4f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.