PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

GAP/DNTF Based PBX Explosives: a Novel Formula Used in Small Sized Explosive Circuits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With 3,4-dinitrofurazanofuroxan (DNTF) and glycidyl azide polymer (GAP) as the main explosive and binder respectively, GAP/DNTF based PBX explosives were designed, prepared and used to fill the small groove of some explosive circuits. The formulation was: DNTF 85 wt.%, GAP 11 wt.%, 2,4-toluene diisocyanate (TDI) and other additives making up the final 4 wt.%. After the uncured slurry mixture was prepared by uniform mixing, a squeezing device was used to charge the circuit groove (dimensions less than 1 mm × 1 mm). Scanning electron microscope (SEM) results showed a fine charging effect. Differential Scanning Calorimetry (DSC) was used to determine the energy of activation (Ea) and the pre-factor (A) of GAP/DNTF and these were compared with those for raw DNTF. The influences and causes of it have been investigated. The experimental results for propagation reliability showed that when the dimensions of the linear groove were 0.8 mm × 0.8 mm, 0.7 mm × 0.7 mm, 0.6 mm × 0.6 mm or 0.5 mm × 0.5 mm, GAP/DNTF based PBX explosives can propagate explosion successfully. Furthermore, the H50 and friction sensitivity of GAP/DNTF based PBX explosives were obtained using the following mechanical sensitivity experiments. These properties are vital if GAP/DNTF based PBX explosives are to be applied in complex explosive circuits.
Rocznik
Strony
397--410
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, 030051, Shanxi, P. R. China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, 030051, Shanxi, P. R. China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, 030051, Shanxi, P. R. China
autor
  • School of Chemical Engineering and Environment, North University of China, Taiyuan, 030051, Shanxi, P. R. China
Bibliografia
  • [1] Silvia D.A., Explosive circuits, US Patent 3,728,965, 1973.
  • [2] Meyere W.H., On the Design of Logic Explosive Circuits, Proc. 12th Int. Symp. Explosives & Pyrotechnics, 1984.
  • [3] Silvia D.A., Explosive Logic Safing Device, US Patent 4,412,493, 1983.
  • [4] Michels H.H., Theoretical Research Investigation of High Energy Species, Report No. AD-A 319054, 1996.
  • [5] Harris B.W., Oil/High Explosive Compatibility Study. Selection of Safing Fluids for Damaged Explosives Assemblies, Propellants Explos. Pyrotech., 1984, 9(1), 7-11.
  • [6] Wulfman D.S., Sitton O., Nixon F.T., Reformulation of Solid Propellants and High Explosives: an Environmentally Benign Means of Demilitarizing Explosive Ordnance, Can. J. Chem. Eng., 1997, 75(5), 899-912.
  • [7] Wang J.Y., An C.W., Li G., Liang L., Xu W.Z., Wen K., Preparation and Performances of Castable HTPB/CL20 Booster Explosives, Propellants Explos. Pyrotech., 2011, 36(1), 34-41.
  • [8] Hu H.X., Zhang Z.Z., Zhao F.Q., Xiao C., Wang Q.H., A Study on the Properties and Application of High Energy Density Material DNTF, J. Acta Armamentarii, 2004, 25(2), 155-158.
  • [9] Wang Q.H., Properties of DNTF-based Melt-cast Explosives, Chin. J. Explos. Propellants, 2003, 26(3),57-59.
  • [10] Hu H.X., Qin G.M., Zhang Z.Z., 3,4-Di-nitrofurazanfuroxan Explosive, China Patent 02101092. 7, 2002.
  • [11] Shi M.D., Research Progress of GAP and GAP Propellant, Chin. J. Explos. Propellants, 1994, 17(1), 9-16.
  • [12] Tang C.J., Lee Y.J., Litzinger T.A., Simultaneous Temperature and Species Measurements of the Glycidyl Azide Polymer (GAP) Propellant During Laser-Induced Decomposition, Combust. Flame, 1999, 117(1), 244-256.
  • [13] Kubota N., Sonobe T., Combustion Mechanism of Azide Polymer, Propellants Explos. Pyrotech, 1988, 13(6), 172-177.
  • [14] Frankel M.B., Grant L.R., Flanagen J.E., Historical Development of Glycidyl Azide Polymer, J. Propul. Power, 1992, 8(3), 560-563.
  • [15] Experimental Methods of Sensitivity and Safety (in Chinese), National Military Standard of China,, GJB/772A-97, 1997.
  • [16] Yang G.C., Nie F.D., Huang H., Preparation and Characterization of Nano-TATB Explosive, Propellants Explos. Pyrotech., 2006, 31(5), 390-394.
  • [17] Zhou Y.S., Zhang Z.Z., Li J.K.., Crystal Structure of 3,4-Dinitrofurazanofuroxan, Chin. J. Explos. Propellants, 2005, 28(2), 43-46.
  • [18] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [19] Dobratz B.M., Crawford P.C., Properties of Chemical Explosives and Explosive Simulants, Report No. UCR-S1319, 1974.
  • [20] Hu H.X., Zhang Z.Z., Zhao F.Q., A Study on the Properties and Application of High Energy Density Material DNTF, Acta Armamentari, 2004, 25(2), 155-158.
  • [21] Stepanov A.I., Dashko D.V., Astrat’ev A.A., 3,4-Bis(4′-nitrofurazan-3′-yl)furoxan: a Melt Cast Powerful Explosive and a Valuable Building Block in 1,2,5-Oxadiazole Chemistry, Cent. Eur. J. Energ. Mater., 2012, 9(4), 329-342.
  • [22] Li H.X., Wang J.Y., An C.W., Study on the Rheological Properties of CL-20/HTPB Casting Explosives, Cent. Eur. J. Energ. Mater., 2014, 11(2), 237-255.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8a753be-b7df-448e-ac2e-c6f6043b4294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.