PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial neural network simulation of lower limb joint angles in normal and impaired human gait

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simulating the complexities of lower limb motion can be useful for orthosis or rehabilitation planning. The aim of this study was to develop an artificial neural network (ANN) able to accurately simulate the changes in the angle of the ankle, knee and hip joints during the gait cycle, then to use it to simulate the impact of a restricted range of ankle and hip joint angle changes on the progression of the knee joint angle. Methods: Thirty four young healthy students participated in the study. Gait kinematics data were collected using the Vicon system, then analyzed with an ANN. Results: We developed an ANN able to accurately simulate the progression of joint angles of lower-limb motion; its simulation of the impact of restricted ankle and hip joint angular ranges in the on the knee joint indicate that the braking phase is critical. Conclusions: ANNs offer a useful research method in clinical biomechanics. Further research in this vein should expand our understanding of compensatory functions in the lower limbs.
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Józef Piłsudski University of Physical Education in Warsaw, Department of Physiotherapy, Warsaw, Poland
autor
  • Józef Piłsudski University of Physical Education in Warsaw, Department of Physiotherapy, Warsaw, Poland
Bibliografia
  • [1] AGEBERG E., Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation – using the anterior cruciate ligament-injured knee as model, J. Electromyogr. Kinesiol., 2002, 12(3), 205–212.
  • [2] ALAQTASH M., SARKODIE-GYAN T., YU H., FUENTES O., BROWER R., ABDELGAWAD A., Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011, 2011, 453–457, DOI: 10.1109/iembs.2011.6090063.
  • [3] BŁAŻKIEWICZ M., WIT A., Comparison of sensitivity coefficients for joint angle trajectory between normal and pathological gait, Acta Bioeng. Biomech., 2012, 14(1), 83–91.
  • [4] DELP S.L., ANDERSON F.C., ARNOLD A.S., LOAN P., HABIB A., JOHN C.T., GUENDELMAN E., THELEN D.G., OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Trans. Biomed. Eng., 2007, 54(11), 1940–1950, DOI:10.1109/TBME.2007.901024.
  • [5] HERZOG W., DIET S., SUTER E., MAYZUS P., LEONARD T.R., MULLER C., WU J.Z., EPSTEIN M., Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis, Journal of Biomechanics, 1998, 31(12), 1137–1145.
  • [6] HOLZREITER S.H., KÖHLE M.E., Assessment of gait patterns using neural networks, Journal of Biomechanics, 1993, 26(6), 645–651, DOI: http://dx.doi.org/10.1016/0021-9290(93)90028-D.
  • [7] HOOPER D.M., MORRISSEY M.C., CROOKENDEN R., IRELAND J., BEACON J.P., Gait adaptations in patients with chronic posterior instability of the knee, Clin. Biomech., Bristol, Avon, 2002, 17(3), 227–233.
  • [8] KACZMARCZYK K., WIT A., KRAWCZYK M., ZABORSKI J., Gait classification in post-stroke patients using artificial neural networks, Gait & Posture, 2009, 30(2), 207–210, DOI:10.1016/j.gaitpost.2009.04.010.
  • [9] KUTILEK P., FARKASOVA B., Prediction of lower extremities’ movement by angle-angle diagrams and neural networks, Acta Bioeng. Biomech., 2011, 13(2), 57–65.
  • [10] LIU W., MAITLAND M.E., The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait, Journal of Biomechanics, 2000, 33(7), 871–879.
  • [11] MILLER A., Gait event detection using a multilayer neural network, Gait & posture, 2009, 29(4), 542–545, DOI: 10.1016/j.gaitpost.2008.12.003.
  • [12] PRADHAN C., WUEHR M., AKRAMI F., NEUHAEUSSER M., HUTH S., BRANDT T., JAHN K., SCHNIEPP R., Automated classification of neurological disorders of gait using spatio-temporal gait parameters, Journal of Electromyography and Kinesiology, 2015, 25(2), 413–422, DOI: https://doi.org/10.1016/j.jelekin.2015.01.004
  • [13] PRENTICE S.D., PATLA A.E., STACEY D.A., Artificial neural network model for the generation of muscle activation patterns for human locomotion, J. Electromyogr. Kinesiol., 2001, 11(1), 19–30.
  • [14] RUMELHART D.E., HINTON G.E., WILLIAMS R.J., Learning representations by back-propagating errors, Nature, 1986, 323, 533, DOI: 10.1038/323533a0.
  • [15] SEPULVEDA F., WELLS D.M., VAUGHAN C.L., A neural network representation of electromyography and joint dynamics in human gait, Journal of Biomechanics, 1993, 26(2), 101–109.
  • [16] WANG J., ZIELIŃSKA T., Gait features analysis using artificial neural networks – testing the footwear effect, Acta of Bioengineering and Biomechanics, Wrocław University of Technology, 2017, 19(1), 17–32.
  • [17] ZHANG D., ZHU K., Modeling biological motor control for human locomotion with functional electrical stimulation, Biological Cybernetics, 2007, 96(1), 79–97.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8a54b79-1dcf-4f1f-b89e-c769ac639b85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.