PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of producing apodized fiber Bragg gratings and examples of their applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metody wytwarzania i zastosowanie apodyzowanych siatek Bragga
Języki publikacji
EN
Abstrakty
EN
The paper presents the principle of operation, the structure, applications and methods of producing uniform, chirped and blazed fiber Bragg gratings as well as long period gratings. Finally, several selected methods used to make apodized gratings are listed and described.
PL
W artykule omówiono zasadę działania, budowę i zastosowania apodyzowanych siatek Bragga: równomiernych, o zmiennym okresie, długookresowych i skośnych oraz wpływ apodyzacji na te siatki. Na koniec wymieniono i opisano kilka wybranych metod stosowanych do wytworzenia apodyzowanych siatek.
Rocznik
Strony
60--63
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Lublin University of Technology, Institute of Electronics and Information Technology
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology
autor
  • Lublin University of Technology, Institute of Electronics and Information Technology
Bibliografia
  • [1] Aladadi Y.T., Abas A.F., Alresheedi M.T.: Performance Optimization of an Apodized-Chirped Fiber Bragg Gratings Based Chromatic Dispersion Compensator. IEEE ICTON 2016, 1–5.
  • [2] Ashik T.J. et al.: Analysis of simultaneous measurement of temperature and strain using different combinations of FBG. AIP Conf. Proc. 1849, 2017, 020031-1–020031-8.
  • [3] Ashrafi R., Asghari M.H., Azana J.: Ultrafast Optical Arbitrary-Order Differentiators Based on Apodized Long-Period Gratings. IEEE Photonics Journal, vol. 3, no 3, 2011, 353–364.
  • [4] Bandyopadhyay S. et al.: Empirical Relations for Design of Linear Edge Filters Using Apodized Linearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, vol. 26, no. 24, 2008, 3853–3859.
  • [5] Beak S., Jeong Y., Lee B.: Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors. Optical Society of America, vol. 41, no. 4, 2002, 631–636.
  • [6] Campbell R.J., Kashyap R.: Optically written Bragg gratings in photosensitive fibre. IEE Colloquium on Non-Linear Effects in Fibre Communications, 1990, 4/1–4/3.
  • [7] Dziubiński G. et al.: Optymalizacja parametrów światłowodowych czujników do pomiaru temperatury. Annual Set The Environment Protection 18/2016, 309–324.
  • [8] Faiyaz N.M., Omi A.I., Faisal M.: Optimization of Apodization Profile of Chirped Fiber Bragg Grating for Chromatic Dispersion Comensation, Dispersion Compensation Using Chirped Apodized FBG. International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) 2014, 1–5
  • [9] Gu Y., Chiang K. S., Rao Y. J.: Writing of Apodized Phase-Shifted Long-Period Fiber Gratings With a Computer-Controlled CO2 Laser. IEEE Photonics Technology Letters, vol. 21, no. 10, 2009, 657–659.
  • [10] Hill K.O., Fujii Y., Johanson D.C., Kawasaki B.S.: Photosensivity in optical fiber waveguides: aplication to reflection filter fabrication. Appl. Phys. Lett. 32, 647, 1978, 647–649.
  • [11] James S.W., Tatam R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, 2003, 49–61.
  • [12] James S.W., Topliss S.M., Tatam R.P.: Properties of Length-Apodized PhaseShifted LPGs Operating at the Phase Matching Turning Point. Journal of Lightwave Technology, vol. 30, no. 13, 2012, 2203–2209.
  • [13] Kaczmarek Z.: Światłowodowe czujniki i przetworniki pomiarowe. PAK, Warszawa 2006.
  • [14] Kashyap R., Wyatt R., Campbell R.J.: Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating. Electronics Letters 21st, vol. 29, no. 2, 1993, 154–156.
  • [15] Kashyap R.: Fiber Bragg Gratings. Academic Press, 1999.
  • [16] Khan S.S.A., Islam M.S.: Chromatic Dispersion Compensation Using Linearly Chirped Apodized Fiber Bragg Grating. ICECE 2010, 9–12.
  • [17] Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Monografie – Politechnika Lubelska 2012.
  • [18] Labidi H., Debarros C., Letteron R., Riant I.: Slanted Bragg grating with ultralow polarization dependant loss. Optical Fiber Communication Conference and Exhibit 2002, 113.
  • [19] Lam D.K.W., Garside B.K., Hill K.O.: Dispersion cancellation using opticalfiber filters. Optical Society of America, vol. 7, no. 6, 1982, 291.
  • [20] Markowski K., Perka A., Jędrzejewski K., Osuch T.: Custom FBGs inscription using modified phase mask method with precise micro and nano-positioning. Proc. SPIE vol. 10031, 2016, 100311H [doi: 10.1117/12.2249381].
  • [21] Morey W.W., Meltz G., Weiss J.M.: Separation Of Temperature And Strain Measurands In Fiber Bragg Grating Sensors. LEOS '92 Conference Proceedings IEEE Lasers and Electro-Optics Society, 1992, 454–455.
  • [22] Osuch T., Jaroszewicz Z.: Influence of optical fiber location behind an apodized phase mask on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics. Opt. Commun. 382, 2017, 36–41.
  • [23] Osuch T., Jaroszewicz Z.: Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency. Optics Communications, vol. 284, 2011, 567–572.
  • [24] Osuch T.: Numerical analysis of harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of phase mask with variable phase step height, J. Opt. Soc. Am. A 33 (2), 2016, 172–178.
  • [25] Otto M. et al.: Flexible Manufacturing Method For Long-Period Fibre Gratings With Arbitrary Index Modulation Profiles. Fibre and Optical Passive Components, 2002, 6–11.
  • [26] Pastor D. et al.: Design of Apodized Linearly Chirped Fiber Gratings for Dispersion Compensation, Journal of Lightwave Technology, vol. 14, no. 11, 1996, 2581–2588.
  • [27] Sikora A.: Apodyzowane siatki Bragga o stałym okresie jako przetworniki odkształceń impulsowych. Analiza numeryczna. PAK, vol. 56, nr 12, 2010, 1436–1438.
  • [28] Stepniak P., Kisała P.: Analisys of impact long period Bragg gratings parameters on their special transmission characteristics. Proc. SPIE 10445, 2017, 104450G [doi: 10.1117/12.2280868].
  • [29] Theriault S. et al.: Effect of phase mask stitching errors on the spectral response of uniform and apodized fiber Bragg gratings. 8th Annual Meeting Conference Proceedings, vol. 1, 1995, 77–78.
  • [30] Wagner J.L. et al: Fiber Grating Optical Spectrum Analyzer Tap. Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications, no. 448, 1997, 65–68 [doi: 10.1049/cp:19971613].
  • [31] Wang L. et al.: Impact of apodisation functions on group delay and reflectivity ripple of chirped fiber Bragg gratings. Optoelectronics Letters, vol. 2, no. 6, 2006, 430–432.
  • [32] Williams R. et al.: Modeling of apodized point-by-point fiber-Bragg gratings. 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology, 133–135.
  • [33] Wójcik W., Kisała P.: Modelowanie struktur światłowodowych siatek Bragga wykorzystywanych w układach czujnikowych. PAK vol. 53, no.11, 2007, 10–14.
  • [34] Yu Y., Zhenhong Y.: Performance optimization of chirped fiber Bragg gratings by asymmetrical apodization. Proc. of the SPIE 10250, 2017, 1025003–6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8a524bc-d54f-4c6f-b83e-c0a8b731ae4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.