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CONTROL BY PARAMETERSOF THE SELECTIVE
ASSEMBLING

Abstract. Models for definition of the amount of incomplete production are offered. The
influence of control by parameters of selective assembling on the amount of
incomplete production is explored. One-step and multi-step control algorithms are
surveyed. Outcomes of modelling are given.

The amount of incomplete production (IP) is onetltd most important parameters of
selective assembling of products [1].

It is necessary to solve the definition task of tbeer limit (minimum) of incomplete
production with known dispersions @f’ and g7 mated part sizes for the control of selective

assembling. The built model will be based on thatrmd of selective assembling.
According to [1], the amount of incomplete prodantcan be defined as:

Q=QrP, (1)

B
where P = O,5Dj| p,(x) - pz(x)|dx— is the probability of non-assemblin@ - is the number of
-8
parts in a batchp,(x) and p,(x) - are the densities of the random quantity fumctda, and
a, parameters of bushes and shafts, respectivelyjs deviation of size,5 - are the limits of

spread of the sizes of mated parts.
The mathematical formulation of the task looksa®¥vs [2]: to find

B
min{Z = [(p.(x) = p,(x))°c, )
-B

keeping in mind the restrictions
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[P0k =1 ©)
-B
B
Ix[pl(x)dx: M,; 4)
-B
B
[ mugdx=0f + M (5)
-B
B
[ p.00dx=1, (6)
-B
B
[ xmp,()dx =M, (7)
-B
B
sz O, (X)dx = o2 + M2, (8)
-B

where M,,M, and o7,0; - are mathematical expectations and dispersiofineteby the
p,(x) and p,(x) densities, respectively.
Functions (1) and (2) reach their extremes forstime meaningg,(x) and p,(x), which

is why the equivalent substitution of the functid@) with the function (2) is proved. The given
task is solvable if eithep,(x) or p,(x)is known, or by the introduction of a new variable.

A(X) = pu(¥) = po(X) - ©

Thus let us subtract (6) from (3), (7) from (4)ddet us subtract (8) from (5). Then the task
is reduced to the following:

B
min{Z = jA(x)de} ,

-B
B
j A(x)dx =0, (10)
-B
B
[xmyax=m, (11)
-B
B
Ixz A(x)dx = o2, (12)
-B

where M =M, - M, is the difference of the mathematical expectatians= o3 - 03 is the
difference of the dispersions related to the naw-zemathematical expectation:
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0% =0t +ME oh =0t M.
The task given of the search of the function ex&dB) is a variation task on a conditional
extreme with integrated restrictions [1]. Solvingl& equation concerninyx) , we have:

809 == 4, 5cr 4,05¢). (13)

The constants], and A, are defined from (10), (11) and (12), if substitgt(13) in them:

A=o?El p=M s ®
ALB B 4lp

Then (13) will become

2
15 ., 3M __450° .

A(X):_S 3 3 5
(B 2[B 8LB

(14)

For instance, it was supposed that the densitytitmof parameters of bushgs(x) has
the truncated normal distribution and is definedtbe interval [—1'1] with the dispersion

o? = 01 and mathematical expectatidv, = 01 of size deviation. The research of the amount
of incomplete production was made with the helghaf meanings variation of the dispersion
o7 and mathematical expectatidvl, . The received data are shown in Table 1. The view
the given density of sizes deviations function aslees and the calculated density of sizes
deviations function of shafts for the cagé = 02; M, = 02 are presented in Figure 1.

Table 1. Results of calculation of non-assemblirappbility

o?=0% M,=01
02=02 02=03
M, 0.1 0.2 0.1 0.2
= 0.14434 0.19668 0.28868 0.33701
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1.5T

1.35T

Fig. 1. Given density function of sizes deviatiafi$hushes and calculated density function of
sizes deviations of shafts for the casg= 02, M, =02

The approach described above is suitable for aalsen the negative meanings for function
p,(x)fail. If p,(x) is obtained as negative, it is necessary to usthanapproach.
In this case the mathematical formulation of thek f@oks as follows:

B xm B
min{Z = [ (p,(x) = p,(F = [ (p,(0) = p, () e+ [ () = P (0F bk
-B =B Xm

keeping in mind the restrictions:

[ () = By (15)
-B
[ X 0P, (xax = M (16)
-B
IXZ Epz(x)dx = Uzzxm + M 22xm; (17)
-B
B
[ P =1= P,y (18)
B
[ X ()dx =M, =M (19)
B
IXZ Epz(X)dX = 0-22 - 022xm + |v|22 - M22xm' (20)
-B
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where M;, M, and o7, 07 are mathematical expectations and dispersionsnetefby the
densitiesp,(x) and p,(x) accordingly; P,,,- is the probability, defined by the densipy(x)
on the interval[— B xm]; M, is a part of mathematical expectation, fallingthe interval
[—,B; xm]; o}, is a part of the dispersion, falling in the intﬂalr\[—,B; xm]; X, - value of
abscissa at whiclp,(x) vanishes.

Then p,(x) can be represented as:

pél)(x): pl(l)(x)"'%l]/]l"'/]zD("'/]s x?), =B < X<Xy;
P9 = 3 @)
p£2)(x): pl(z)(x)+EI:Q/]4+/]sD(+/]6 %), Xn € X< B,

and constantsl, ... A are defined keeping in mind the non-negativitythe function p,(x),
the minimum of which is equal to null and also dege on parametersi/,, A,,
97, 030 Mo Opns P X

The simultaneous equations for the definitidn.. A, are obtained from the system (15) ...
(20) at substitution of (21) into it

A=k [P, +k, M, +k; &7, (22
A, =k, [P, K, M, + K DlTXZm, (23
Ay =k [P, + ks M, + ks (072, (24,
Ay ==0 [Py +9, UM -M, )+, EﬂUZ—Ufm), (25
/]5 =-9; prm+94 M _Mxm)+gs Eﬂaz—fffm)- (26,
Ao = =93 PPy + 95 M —M ) + g, [{o” —0%,), 27,
where
P = Pomn "R My =My =Myys M =M, =My

2 _ 2 _ 2 2 N2 . a2 _ 2 2 2 _ap2.
a-xm_a-me Jlxm+M2xm Mlxm' g _02 Jl+M2 Ml'

ki, 0, (I =ES) - constants inserted for simplification of the eegsion view.

There are ten unknowns in the given six equatioAs..A,, M, M,, o?, o3,
M, , afm, P., Xu-.ltis necessary to use the following four cormti for their definition,
assuming that the required functigm (x) is smooth, with an extreme equal to null. In this
case the derivatives of the poirf, are equal to each other if they are equal to null:



After the solution of the system (22)...(27) with ddions (28)...(31), retrieved unknown
parameters are substituted in the expression (&ihg (21) the probability of non-assembling

PP (%,) =0,

dpf” (x)
dx

X=X,

P (%n) =0,

dp” (x)
dx

X=X

=0,

|
o

(28)
(29)
(30)

(31)

parts P is calculated. The results of the calculations given in Table 2. The view of the

given density function of a sizes deviation of esland the calculated density function of a

sizes deviation of shafts is presented in Figure 2.

Table 2. Results of calculation of the magnitudaobmplete production modelling.

07=0L M,=01
0:=02 02=03
M, 0.3 0.4 0.3 0.4
=) 0.28151 0.38667 0.41673 0.52029
1.29
LX)
d B
2
0.
0.6
0.4
0.2
1 -0.8 06 0.4 02 o 0.2 0.4 06 0.8

Fig. 2. Given density function of size deviationbafshes and calculated density function of

size deviation of shaftsgf = 02 and M, = 03)
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The suggested method for definition of the prolitgbdf non-assembling allows finding
the lower limit of incomplete production under tenditions mentioned above.

The suggested limits can be used for forecastiagrtttume of exhaustion of products and
also for estimation of the quality of process monitg of selective assembling as a
comparison standard.

The idea of parameter control of selective assambis offered in [1]. The procedure
consists in displacement organization of the aerem of shaft production that is proved by
simpler manufacturing methods of outside surfadé®refore it is supposed to control their
centres of an alignment.

All algorithms of controlled selective assemblirencbe divided into one-step and multi-
step.

Firstly, let us consider the one-step algorithmalihis organised as follows: the volume of
the shafts deviations within the tolerance zondiv&ded inton generally unequal parts. Each
group has its centre of alignment. The controlliagameters are the number of groups, their
centres of alignment, and volumes. The indicatedmaters are chosen so as to minimise the
incomplete production, that is the task of multrgraeter optimisation is solved.

The task of the control of the selective assembtiaung be presented as follows: to find the
meaning of the vectoY (n,c,,q,) providing an extreme of the function

B n
Y(n,c,q) - min{a =050 DJ;J Py (X) _Z P.;i (X,N,C;, )

dx}, (32)
Q =QLly,
where n is the number of groupsQ is the volume of parts in subgroup ¢ is the

probability of parts hit in subgroup; Zqi =1.
i=1

The view of the initial density functionp,(x) and p,(x)for bushes and shafts,
respectively, provided with existing inventory, ¢ensidered to be known. The optimum
number ofn,, subgroups was defined by exhaustive search. Furtieulations have shown
that division into a number of subgroups excee@ing is inexpedient, as it does not result in
substantial improvement. Therefore, the exhaussgarch does not require considerable
machining time and can be used as a method.

Thus, with then fixed, the two-parameter optimisation on parametersy was carried

out. Modelling was carried out for the symmetriw$ap,(x) and p,(x) . Thus, as it is shown
in (9), (13), (14)

15 . 450°

85 85" 2.

Paop (X) = Py(X) +

The given expression is used as a comparison sthnélpart from this, it is necessary to
define the mathematical expectatioms,, (x) and the dispersiong?, (x) corresponding to the
new density functionp,,(X) , obtained after the division into subgroups. Let us consider the
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expressions to define the indicated magnitudes ewlividing into 2, 3, 4, 5 subgroups
(33)...(37).

While dividing into 2 subgroups (in this case itolsvious that volumes of the subgroups
are equal):

a+c (a-c) (a+c)

_ _1 1 —Q)dx=0:
nwzH(x)—_(aJ+c)xna2H(x)dx—Zm_(aj+cx)no2(x+c)dx+Zm_(aj_ztpz(x )dx=0; (33)
0% (x) = JX [pn (X)X = 02(x) + 2 (34)

—(a+c)

While dividing into 3, 4, 5 subgroups, the mathdo@dtexpectations are also equal to null,
therefore let us consider the expressions for déspes only.
While dividing into 3 subgroups

a+c

T3 () = X Ty (k= F2(3) + (0 + ) (&, (35)

~(a*c)

e =[e]-

While dividing into 4 subgroups

a+c

Ty ()= [ X Ty ()X = G2(X) + (0, *+ ) (€ + (0 +,) (€, (36)

~(a+c)

el =ledf s le] =led-
While dividing into 5 subgroups

a+c

T ()= [ X Ty, ()X = G200) + (0, + Q) [ + (0 + &) (€] (37)

—(a+c)

& =les]» lez|=c

The numbers of subgroups are counted starting from the leftralary of size deviations.
The calculations show that while dispersing theaation of sizes of the busheg = 01

and shafts o7 =;—ia§ the incomplete production in the case of conttbligelective
assembling while dividing into two subgroups maRke31642 at the incontrollable boundary
estimation of 0.05499. Thus the displacement #+018. The given example visually shows
the expediency of controlled selective assemblimges the incomplete production has
decreased by more than 3 times.

Analogous researches have been carried out foaBd4 subgroups. The following results
(table 3) are received. The views of curves arsegueed in the figure 3.
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Table 3. Results of the calculations

2 3 4 5
: +018 0 +03 +03 +001 0 +031 +031
q 2x05 059 | 2x021 | 2x021 2x 029 042 | 2x01 2x 019
P| 001642 0,00204 0,00201 0,00178

For 3 subgroups, IP is 0.00204 with the displacén@wr=0, ¢, =+03 and probabilities
of parts hit in subgroupsy = 021, g, = 058. For 4 subgroups, IP is 0.00201 with the
displacementc, =+03, ¢, =+001 and probabilities of parts hit in subgroupg = 021,

g, = 029. These values are 27-28 times less than thosenebtawith an incontrollable

selective assembling.
For 5 subgroups, IP is 0,00178 with the displaceénmer=0, ¢, =+009, c, =+031 and

probabilities of parts hit in subgroupg = 042, g, = 01, g, = 019. Itis 30 times less than in
the case of incontrollable selective assembling.

A1 08 06 04 02 02 D.'leD.'B 0s 1

Fig. 3. Curves of size deviationg(x) and p,(x) while dividing
into 3, 4 and 5 subgroups

Further division into subgroups has not given amystderable results.
For the analysis of expediency of controlled asdemlusage ifnis fixed, one-parameter

optimisation on parameter, has also been carried out. As before, modelling earied out
for the symmetric lawsp,(x) and p,(x) . Besides that, the mathematical expectations(x)

and the dispersions?, (x) corresponding to new density functigs,(x) obtained have been

spotted while dividing inton subgroups (special cases of expressions (33) .)).(B&t us
consider the expressions to define the indicatednitades while dividing into 2, 3, 4, 5
subgroups.

While dividing into 2 subgroups:
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a+c (a-c) (a+c)

Mo (9= [ XCPay (¥= 201 [ XIp,(x c)e+2 0 [ Xy (x-0)ek =0;
-(a+c) -(a+c) -(a-c)

a+c

T ()= [ X Dy (= a3 (x) +¢°,

—(a*c)

While dividing into 3, 4, 5 subgroups, mathematieapectations are also equal to null,
therefore let us consider expressions for dispessimly.
While dividing into 3 subgroups

Gh ()= [ X [Py (k= 030+ 2 2F.

—(a+c)

o] =le]
While dividing into 4 subgroups

a+c 1 1
UZZH (x) = sz [P,y (x)dx = 0'22(X) +§E¢22 +§|];12 ,

—(a+c)

el =le [e.|=[cd -
While dividing into 5 subgroups

at+c

2 - 2 — 42 2 2 2 2
T () = [X Doy (X)dx =03 () + L 5+ 8

~(a+c)

o =l e =[e]-

Numbers of subgroupis are read off from the left-hand boundary line efidtions of size.

The received values were compared to the boundsiya&tion of incontrollable selective
assembling. The results are given in Table 4.

With dispersions of size allocation of the bushe$=01 and shafts o7 =2—ia§,
incomplete production takes place if it is contdllselective assembling with one-parameter
optimisation concerning the parameter for 3 subgroups of 0.01642 at incontrollable
boundary estimation of 0.05499. Thus the displacgnsec, =0, ¢, =+018. In this case the

incontrollable incomplete production has decrea3etimes more. For 4 subgroups, IP is
0.00583 at a boundary estimation of 0.05499. Thesdisplacement ig; =0, ¢, =+027.

For 5 subgroups IP is 0.00515. Thus the displaceimen =0, ¢, =0, ¢, =+027.
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Table 4. Results of the calculations

n 2 3 4 5
c +018 0 +023 0 | 027 0 | #031 | 029
P | 0,01642 0,01196 0,0058 0,0051

The given instances visually show the expedienaysaig one-step algorithm of controlled
selective assembling. Further division into subgeowill not give any considerable decrease
of IP result.

Multi-step controlled selective assembling is piagnthe indicated process minding the
incomplete production generated after accomplistim&tihe previous step. Not collected parts
participate in the following stage of assemblingg @he following batch is made minding the
volume and density function of size deviationsh@ temaining non-collected parts. Thus, the
task is reduced to research of effect of parameitintrol of the selective assembling in
dynamics, i.e. planning of production is carried ainding the incomplete production of
accomplishment of the previous step.

Control of the process of selective assemblingyinagnic conditions is possible with the
help of sampling of the number of groups into whiblh volume of agglomerated parts at an
observed step is divided, coordinates of the cerdfean alignment of inventory, and volumes
of groups of made parts.

Mathematically the task can be presented as fintfiagneaning of vectoY(nJ, G, G, Q; )
providing an extreme of the function

s n,
( q.,,Q-)~ mm{Q OSDZ[Q, D[J py; (x —Z pzj-(x, n.cj, q%dx}} (38)
P = J;Jplzj

Q=05@ P =05} Q;: Q,=Qm,,
i=1

n

i=1

pzzj'(a Gi»G;,n *d ; (39)

where n; - number of subgroups on a sfepc; - coordinate of the centre of alignment of
subgroupsi at step j; g; - probability of hit of parts in subgroup at step | (un =1);
Q; - volume of parts agglomerated at stppQ,; - volume of subgroup at stepj; j -the

number of a step at realization of multi-step adseng j =1m; m - maximum number of

steps ¢n=2,_oo); Q= ZQJ. - total amount of agglomerated parts;;(x) - density function
i=1

of bushes agglomerated at st¢p depending on magnitude of not assembling at sjefl);

P (X €, G, n;) - density function of shafts agglomerated at stpp depending on

parameters |, g ;, n; and magnitude of not assembling at st¢p 1); P, - probability of not
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assembling parts at stejp; 6] - volume of not assembling parts at step
If agglomerated volumes of parts at each step areuale to

(Q=Q =1E<D; Kzl k=1ml =l_rn), then the expressions (38, 39) will become:
m

B

[Jplzj(x)_ipzzj(xi nj'Qj’qij*dX}; (40)

=12

m

B n
Pz%z_‘jpﬁj(x)_zpzzj(x’ ”i'qjiqi%dx’ (41)

j=1°

where P - average overall probability of non-assemblingresponding to the whole process.

Let us mark that, as a whole, controlled selecsissembling includes one- and multi-step
algorithms in various combinations. The one-stegorthm was described earlier, and the
multi-step can be divided into two aspects:

- multi-step selective assembling with a givefunze of agglomerated parts;

- multi-step selective assembling with unlimitemlume of agglomerated parts within

months (M =20 ), with the presence or absence of scheduled motabks.
Multi-step selective assembling with a given voluofeagglomerated parts is fulfilled by
the following algorithm. Division of the agglomeedttotal number of part® into m groups

for production and assembling at steps is carried out. Production of parts at tithcated
steps is carried out in succession in time, i.ehe@aoup is made keeping in mind the previous
assembling at support of a minimum of incompletedpction. Let us consider implementation
of control by multi-step selective assembling om éixample of a two-step process.

Multi-step selective assembling occurs for a givelume of agglomerated parts according
to the following algorithm:

1. Two semi-batches of parts are made, in volu@les

2. They are assembled in units, as a result a€lwimcomplete production is made, in
volume q' .

3. Two semi-batches of parts are made, in volu@és Q' —q', the number of parts in
the new batches being less than required'inDisplacement of distribution functions of these

batches is selected so that the level of incompdeteluction at assembling of batc@ is

minimal. That is, on assembling the required nundfeparts, as parts are added in a batch,
dead assembling at the previous step comes imactio

Thus, there is a process of control by selectigembling in dynamic conditions.

The view of partition law of size deviation of beshand shafts at the second step is
definable. At this step a mix of detail parts remiag from the previous (first) step and
manufactured at the current (second) step is formed

Let us mark out density functions of size deviaiaf two semi-batches of parts (bushes
and shafts) asp,(x) and p,(x), respectively. In practice, it is possible to ptbem by

building up histograms. At the presence of sortimgchines, this process is executed
automatically. As a result of assembling at thevimgs step, there appeared incomplete
production.
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It is necessary to find distribution functions; (x) and p,s(x) of size deviations of shafts

and bushes participating in assembling at the nu second) step, previously having spotted
allocations of size deviations of partp,(X) and p,(X), included in the incomplete

production which has remained after the previoap.st
Let event A be the hit of bushes in the given interya)3; x] at the next step of assembling

process. TherP(A) is the probability of that the bush has got ingheen interval[-5; x] .
By the formula of composite probability

P(A) =D P(H,)[P(A/H)), (42)

=1

event A can occur under the condition of implementatioroné of the hypothesel,,H, .
The hypothesisH, will be that at the current step of assemblingshas manufactured at the
given step are used. The hypothebig will be that at the current step of assemblingshas
are used that were manufactured on previous steé@ppeared not assembled. THe@H,) -
probability that in assembling bushes manufactuethe current step participat®(H,) -

probability that in assembling bushes which wereufactured at the previous step and did not
find mating parts participateP(A/H,) - probability of hit of bushes in an intervitg; x]

under the condition of implementation of hypothelsis equal distribution functions, (x) of
size deviation of parts (bushes) at the given s/ H,) - probability of hit of bushes in an
interval [-£;x] under the condition of implementation of hypotkeki, equal distribution
functions F,(x) of size deviation of parts (bushes) which haveaieed from the previous
step. The densities corresponding to indicatedibligton functions are marked out g5(x),

Pui(X) -
Thus, the formula (42) will become

P(A) = P(H,) IP(A/H,) + P(H,) IP(A/H,) = P(H,) IF,(X) + P(H,) [F,, () (43)

that fully refers to parts 1 (bushes) and to pa@rtéshafts). According to the function and
density function of shafts manufactured at the joev and given steps, these are marked out

as F,(x), Fu(X), pa(X), Par(X) -
The probability of implementation of hypothedit, is equal to the relative share of parts

not assembled at the previous step in the totalatheuntM of agglomerated parts at the
given step. Keeping in mind the above and formiija P(H,) and P(H,) are equal to:

P(H) =2 =k, (a4)
P(H,) =1-P(H,) =k,. (45)

Then the functions and density function of sizeiatian of bushes and shafts, obtained
from (43) ... (45), are accordingly equal to:
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Fis (X) =k [F, (X) + Kk, TR (X) 5
Fos (X) =k, [F,(X) + k; [F(X) ;
Py (X) =K, [y (X) + K, Oy (X)
P,5 (X) =k, [P, (X) + K, [y(X) -

Expressions forp,,(x) and F,(x) are defined as follows:

P.(X) — P,(X)

Pu(X) = 05CP
0, pi(X) < p(X)
Fi(X) - F,(x)

F.(x) = 050P
0, py(X) < p2(X),

» (%) > pa(X);

» Pu(X) > po(X);

where P is determined according to (39), and in speciaésdo (41).
Expressions forp,,(x) and F,,(x) are defined analogously:

pz(x) ~ pl(x)
P, (X) = 0s5(P

0, py(X) > p,(X)

F(X) ~ Fy(x)
Fou(x) = 050P

0, py(X) > p,(X);

» (%) < p(X);

» Pu(X) < Po(X);

Let us give an instance of use of the received esgions. If permissible, densities of
allocations of size deviation of the bushes andtsltarrespond to Figure 4.

(46)
(47)
(48)
(49)

(50)

(51)

(52)

(53)

In this case the number of intersection pointsw¥es p,(x) and p,(x) is equal to 2, and

p,(0) < p,(0) (that is the ordinate of the density function esdeviation of bushes at that
value is more than the ordinate of the density fioncof shafts, as shown in the graph). The
view of densitiesp,,(x) and p,,(x) received according to expressions (50), (52) és@nted

in Figures 5 and 6. The view of densitigs;(x) and p,;(x) received according to
expressions (48), (49) is presented in Figure 7gmitade of non-assembling, calculated
according to formulas (38), (39), (48) ... (53) iz1ah0,00395 at displacemens = +028 and
equal volumes of subgroups.
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Fig. 4. Densities of allocations of size deviatiofishafts and bushes:

plliz)

Fig. 5. Density function of bushes which have reradifrom the previous step

!

p.(X) and p,(x)

o .-’,'
2 L
-1 ik -0 -04 02 0 oz 04 04 Ik] 1
— X, x Lo

M\

=

/]

N

[\

[

\

\

i

\

\

\

\
\
\
\
a

o
ip

|
|
|
|
l i

N

-0

i

b4

3

1



P21z / 5 \

Fig. 6. Density function of shafts which have reneal from the previous step

b ; \
b, ()
/ \
o -1 0.5 i 0.5 1

Fig. 7. Density functionp,;(x) and p,s(x) size deviations of
bushes and shafts, respectively

The results of modelling are exemplified in Table 5

Table 5. Results of modelling of the process oftiratep controlled selective assembling
with given volume of agglomerated parts

n G 4 P

2 +028 - - 0,5 0,5 0,0395
3 0 +03 0,1 2x 045 - 0,00184
4 +025 +04 - 2x04 2x01 0,00141
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If it is necessary to provide a set volume of asdethunits, it is required to define the
detail parts volume made at the second step. Trioisedure is executed through iteration (by
selection) and does not involve any difficulty.

Multi-step selective assembling with unlimited vul@ differs from the previous one in the
absence of restriction for the total amount of 9apt made duringn months, anch is not

defined beforehand. At each step (monthly prograuaccepted for a step) it is either one-step
algorithm that is used, or a multi-step with a giwe@lume of agglomerated parts given above.
Generally, monthly programs can be various. At esiep parts participate in assembling either
left from the previous step, or produced duringadbeent one. Their amount is selected for the
given monthly program through iteration, as memgih above. Density and distribution
functions of size deviations of parts either lefirh the previous step, or generating a mix on a
given one, are defined with the help of the forrau(@6)...(53). The monitoring of the
assembling process is made with the help of theespanameters as in multi-step selective
assembling with given volume of agglomerated pdarte basic difference between the given
process and the previous one is that its duratiol) @nsequently, the volume of agglomerated
parts are not defined beforehand.

Let us put the following instance of use of theltomiodel. It is admissible that firmness of
allocations of size deviation of bushes and shaitisr stepi will match Figure 8. Here the
kind of module of difference of density functionsife deviations of bushes and shajts) is

adduced. At the indicated step of assembly, thebeurof cross points of curvep,(x) and
p,(x) is equal to four, andp,(0) > p,(0) (that is the ordinate of density function of size
deviations of bushes at value= 0 is more than ordinate of density function of sbafftig. 8).
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Fig. 8. Density functiong,(X) and p,(x) of size deviations of bushes and shafts,
respectively,q(x) = | p,(x) - pz(x)| - module of difference of density functiort; -
coordinates of abscissae of cross points, wherd
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Let us mark out, througp,; ,(x) and p,; ,(x), the density function of size deviations of
bushes and shafts remaining after non-assemblingie@ti —1, and throughp,;;(x) and
P,;s(X) - the density function of size deviations of bushead shafts which are forming a mix
at stepi . These curves are shown in Figures 7, 8. Coorelinat cross pointst; of curves
Pz (X) and p,;; (X) were determined numerically with the help of acépleprocedure.

The complexity of use of the built model consigtstlie volume that the process of an
operation with p,;; (X) and p,;;(x), already after two steps, is extremely labour-camisg.

Therefore, in the model their approximation by @egpolynomials not below the tenth order is
used by the least-squares method. Thus

|
Pz (X) =D 3 (x=x%))' , k=12,

i=0

where x, is a point of decomposition which is equal to nulthe cases observed above.
The results of modelling are exemplified in Table 6

Table 6. Results of modelling of multi-step conied| selective assembling process with
unlimited volume of agglomerated parts while diaglithe monthly batch of parts into two
subgroups.

Number of 1 5 3 4 5 6
months
c +018 +018 +018 +015 +017 +018
P 0,153 0,00435| 0,00164 0,00935 0,00181 0,00358

The researches carried out show that process nnimgjtof selective assembling allows to
lower the level of incomplete production, and irm&ocases, as can be observed from the
Tables, by 1,5 times. Thus the usage expediencyhefsuggested methods of selective
assembling control is obvious, as these methodsiatorequire any additional apparatus
expenses, and consequently, any financial expearditu

References

[1] BULOVSKIJ P. I, KRYLOV P. I., LAPUCHIN W. A.: Avtmatizacja selektivnoj sborki
priborov (in Russian). Mashinostroenie, Leningr@d8, 232 s.

[2] KOPP W. J., SEROWA N. B.: Variacionnyj podchod kepnke nezaverszonnogo
proizvodstva pri selektivhoj sborke pri nesovpadagzich toczecznych ocenkach
sluczainych vieliczin (in Russian). Sb. Naucznyahat SNIJEiIP/10, Sewastopol 2004, s.
41-48.

97



