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CONTROL BY PARAMETERS OF THE SELECTIVE 
ASSEMBLING 

 
 
Abstract. Models for definition of the amount of incomplete production are offered. The 

influence of control by parameters of selective assembling on the amount of 
incomplete production is explored. One-step and multi-step control algorithms are 
surveyed. Outcomes of modelling are given. 

 
 
The amount of incomplete production (IP) is one of the most important parameters of 

selective assembling of products [1].  
It is necessary to solve the definition task of the lower limit (minimum) of incomplete 

production with known dispersions of 21σ  and 2
2σ  mated part sizes for the control of selective 

assembling. The built model will be based on the control of selective assembling. 
According to [1], the amount of incomplete production can be defined as: 
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where dxxpxp
�

∫
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−⋅=
β

β

)()(5,0 21 - is the probability of non-assembling; Q - is the number of 

parts in a batch; )(1 xp and )(2 xp  - are the densities of the random quantity function of 1α  and 

2α  parameters of bushes and shafts, respectively; x  - is deviation of size; β - are the limits of 

spread of the sizes of mated parts. 
The mathematical formulation of the task looks as follows [2]: to find  
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keeping in mind the restrictions 
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where 21, MM  and 2
2

2
1 ,σσ  - are mathematical expectations and dispersions defined by the 

)(1 xp  and )(2 xp  densities, respectively. 

Functions (1) and (2) reach their extremes for the same meanings )(1 xp  and )(2 xp , which 

is why the equivalent substitution of the function (1) with the function (2) is proved. The given 
task is solvable if either )(1 xp  or )(2 xp is known, or by the introduction of a new variable.  

 
)()()( 21 xpxpx −=∆ .     (9) 

 
Thus let us subtract (6) from (3), (7) from (4), and let us subtract (8) from (5). Then the task 

is reduced to the following: 
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where 21 MMM −=  is the difference of the mathematical expectations; 2
21

2
11

2 σσσ −=  is the 

difference of the dispersions related to the non-zero mathematical expectation: 
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The task given of the search of the function extreme (2) is a variation task on a conditional 
extreme with integrated restrictions [1]. Solving Euler equation concerning )(x∆ , we have: 
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The constants 1λ  and 2λ  are defined from (10), (11) and (12), if substituting (13) in them: 
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Then (13) will become 
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For instance, it was supposed that the density function of parameters of bushes )(1 xp  has 

the truncated normal distribution and is defined on the interval [ ]1;1−  with the dispersion 

1,02
1 =σ  and mathematical expectation 1,01 =M  of size deviation. The research of the amount 

of incomplete production was made with the help of the meanings variation of the dispersion 
2
2σ  and mathematical expectation 2M . The received data are shown in Table 1. The view of 

the given density of sizes deviations function of bushes and the calculated density of sizes 

deviations function of shafts for the case 2,0;2,0 2
2
2 == �σ  are presented in Figure 1. 

 
Table 1. Results of calculation of non-assembling probability 
 

1,0;1,0 1
2
1 == �σ  

 2,02
2 =σ  3,02

2 =σ  

2M  0.1 0.2 0.1 0.2 

P  0.14434 0.19668 0.28868 0.33701 

 



 83 

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

p1 x( )

p2 x( )

x  
 

Fig. 1. Given density function of sizes deviations of bushes and calculated density function of 

sizes deviations of shafts for the case 2,0;2,0 2
2
2 == �σ  

 
The approach described above is suitable for cases when the negative meanings for function 

)(2 xp fail. If )(2 xp  is obtained as negative, it is necessary to use another approach. 

In this case the mathematical formulation of the task looks as follows: 
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keeping in mind the restrictions: 
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where 21, MM  and 2
2

2
1 ,σσ  are mathematical expectations and dispersions, defined by the 

densities )(1 xp  and )(2 xp  accordingly; xmP - is the probability, defined by the density )(2 xp  

on the interval [ ]mx;β− ; xmM 2  is a part of mathematical expectation, falling in the interval 

[ ]mx;β− ; 2
2xmσ  is a part of the dispersion, falling in the interval [ ]mx;β− ; mx  - value of 

abscissa at which )(2 xp  vanishes. 

Then )(2 xp  can be represented as: 
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and constants 61 λλ K  are defined keeping in mind the non-negativity of the function )(2 xp , 

the minimum of which is equal to null and also depends on parameters 21, �� , 

mxmxmxm xPM ,,,,, 2
2
22

2
2

2
1 σσσ . 

The simultaneous equations for the definition 61 λλ K  are obtained from the system (15) … 

(20) at substitution of (21) into it 
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( )6,1,, =igk ii  - constants inserted for simplification of the expression view. 

There are ten unknowns in the given six equations: 61 λλ K , 21, �� , 2
2

2
1 , σσ , 

mxxx xPM
mmm
,,, 2σ . It is necessary to use the following four conditions for their definition, 

assuming that the required function )(2 xp  is smooth, with an extreme equal to null. In this 

case the derivatives of the point mx  are equal to each other if they are equal to null: 
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(31) 

 
After the solution of the system (22)…(27) with conditions (28)…(31), retrieved unknown 

parameters are substituted in the expression (21). Using (21) the probability of non-assembling 
parts P  is calculated. The results of the calculations are given in Table 2. The view of the 
given density function of a sizes deviation of bushes and the calculated density function of a 
sizes deviation of shafts is presented in Figure 2. 

 
Table 2. Results of calculation of the magnitude of incomplete production modelling. 
 

1,0;1,0 1
2
1 == �σ  

 2,02
2 =σ  3,02

2 =σ  

2

�
 0.3 0.4 0.3 0.4 

P  0.28151 0.38667 0.41673 0.52029 
 

 
 

Fig. 2. Given density function of size deviation of bushes and calculated density function of 

size deviation of shafts ( 2,02
2 =σ  and 3,02 =

�
) 
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 The suggested method for definition of the probability of non-assembling allows finding 
the lower limit of incomplete production under the conditions mentioned above.  

The suggested limits can be used for forecasting the volume of exhaustion of products and 
also for estimation of the quality of process monitoring of selective assembling as a 
comparison standard. 

The idea of parameter control of selective assembling is offered in [1]. The procedure 
consists in displacement organization of the acceptance of shaft production that is proved by 
simpler manufacturing methods of outside surfaces. Therefore it is supposed to control their 
centres of an alignment. 

All algorithms of controlled selective assembling can be divided into one-step and multi-
step.  

Firstly, let us consider the one-step algorithm which is organised as follows: the volume of 
the shafts deviations within the tolerance zone is divided into n generally unequal parts. Each 
group has its centre of alignment. The controlling parameters are the number of groups, their 
centres of alignment, and volumes. The indicated parameters are chosen so as to minimise the 
incomplete production, that is the task of multi-parameter optimisation is solved. 

The task of the control of the selective assembling can be presented as follows: to find the 
meaning of the vector ),,( ii qcnY providing an extreme of the function 

 













−⋅⋅=→ ∫ ∑
− =

β

β

dxqcnxpxpQQqcnY
n

i
iiiii

1
21 ),,,()(5,0min),,( ,  (32) 

ii qQQ ⋅= , 

 
where n  is the number of groups; iQ  is the volume of parts in subgroup i ; iq  is the 

probability of parts hit in subgroup i ; 1
1

=∑
=

n

i
iq . 

The view of the initial density function )(1 xp  and )(2 xp for bushes and shafts, 

respectively, provided with existing inventory, is considered to be known. The optimum 
number of optn  subgroups was defined by exhaustive search. Further calculations have shown 

that division into a number of subgroups exceeding 6…8 is inexpedient, as it does not result in 
substantial improvement. Therefore, the exhaustive search does not require considerable 
machining time and can be used as a method.  

Thus, with the n fixed, the two-parameter optimisation on parameters ic , iq was carried 

out. Modelling was carried out for the symmetric laws )(1 xp  and )(2 xp . Thus, as it is shown 

in (9), (13), (14) 
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The given expression is used as a comparison standard. Apart from this, it is necessary to 

define the mathematical expectations )(2 xm H  and the dispersions )(2
2 xHσ corresponding to the 

new density function )(2 xp � , obtained after the division into n  subgroups. Let us consider the 
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expressions to define the indicated magnitudes while dividing into 2, 3, 4, 5 subgroups 
(33)…(37). 

While dividing into 2 subgroups (in this case it is obvious that volumes of the subgroups 
are equal): 
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While dividing into 3, 4, 5 subgroups, the mathematical expectations are also equal to null, 

therefore let us consider the expressions for dispersions only. 
While dividing into 3 subgroups 
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While dividing into 4 subgroups 
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While dividing into 5 subgroups 
 

2
151

2
242

2
2

)(

2
22

2 )()()()()( cqqcqqxdxxpxx
ca

ca

HH ⋅++⋅++=⋅= ∫
+

+−

σσ   (37) 
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The numbers i  of subgroups are counted starting from the left boundary of size deviations. 

The calculations show that while dispersing the allocation of sizes of the bushes 1,02
2 =σ  

and shafts 2
2

2
1 21

13σσ =  the incomplete production in the case of controlled selective 

assembling while dividing into two subgroups makes 0.01642 at the incontrollable boundary 
estimation of 0.05499. Thus the displacement is 18,0±=� . The given example visually shows 
the expediency of controlled selective assembling since the incomplete production has 
decreased by more than 3 times. 

Analogous researches have been carried out for 3, 4 and 5 subgroups. The following results 
(table 3) are received. The views of curves are presented in the figure 3. 
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Table 3. Results of the calculations 
 

n  2 3 4 5 

ic  18,0±  0  3,0±  3,0±  01,0±  0  31,0±  31,0±  

iq  5,02×  59,0  21,02×  21,02×  29,02×  42,0  1,02×  19,02×  

P  01642,0  00204,0  00201,0  00178,0  
 
For 3 subgroups, IP is 0.00204 with the displacement 00 =c , 3,01 ±=c  and probabilities 

of parts hit in subgroups 21,01 =q , 58,02 =q . For 4 subgroups, IP is 0.00201 with the 

displacement 3,01 ±=c , 01,02 ±=c  and probabilities of parts hit in subgroups 21,01 =q , 

29,02 =q . These values are 27-28 times less than those obtained with an incontrollable 

selective assembling. 
For 5 subgroups, IP is 0,00178 with the displacement 00 =c , 09,01 ±=c , 31,02 ±=c  and 

probabilities of parts hit in subgroups 42,00 =q , 1,01 =q , 19,02 =q . It is 30 times less than in 

the case of incontrollable selective assembling. 
 

 
 

Fig. 3. Curves of size deviations )(1 xp  and )(2 xp  while dividing  

into 3, 4 and 5 subgroups 
 
Further division into subgroups has not given any considerable results. 
For the analysis of expediency of controlled assembling usage if n is fixed, one-parameter 

optimisation on parameter ic  has also been carried out. As before, modelling was carried out 

for the symmetric laws )(1 xp  and )(2 xp . Besides that, the mathematical expectations )(2 xm H  

and the dispersions )(2
2 xHσ corresponding to new density function )(2 xp � obtained have been 

spotted while dividing into n  subgroups (special cases of expressions (33) … (37)). Let us 
consider the expressions to define the indicated magnitudes while dividing into 2, 3, 4, 5 
subgroups. 

While dividing into 2 subgroups: 
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While dividing into 3, 4, 5 subgroups, mathematical expectations are also equal to null, 

therefore let us consider expressions for dispersions only. 
While dividing into 3 subgroups 
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While dividing into 4 subgroups 
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While dividing into 5 subgroups 
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Numbers of subgroups i  are read off from the left-hand boundary line of deviations of size. 
The received values were compared to the boundary estimation of incontrollable selective 

assembling. The results are given in Table 4. 

With dispersions of size allocation of the bushes 1,02
2 =σ  and shafts 2

2
2
1 21

13σσ = , 

incomplete production takes place if it is controlled selective assembling with one-parameter 
optimisation concerning the parameter ic  for 3 subgroups of 0.01642 at incontrollable 

boundary estimation of 0.05499. Thus the displacement is 00 =� , 18,01 ±=� . In this case the 

incontrollable incomplete production has decreased 3 times more. For 4 subgroups, IP is 
0.00583 at a boundary estimation of 0.05499. Thus the displacement is 01 =� , 27,02 ±=� . 

For 5 subgroups IP is 0.00515. Thus the displacement is 00 =� , 01 =� , 27,02 ±=� . 
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Table 4. Results of the calculations 
 

n  2 3 4 5 

ic  18,0±  0 23,0±  0 27,0±  0 31,0±  29,0±  

P  0,01642 0,01196 0,0058 0,0051 
 
The given instances visually show the expediency of using one-step algorithm of controlled 

selective assembling. Further division into subgroups will not give any considerable decrease 
of IP result. 

Multi-step controlled selective assembling is planning the indicated process minding the 
incomplete production generated after accomplishment of the previous step. Not collected parts 
participate in the following stage of assembling, and the following batch is made minding the 
volume and density function of size deviations of the remaining non-collected parts. Thus, the 
task is reduced to research of effect of parameters of control of the selective assembling in 
dynamics, i.e. planning of production is carried out minding the incomplete production of 
accomplishment of the previous step. 

Control of the process of selective assembling in dynamic conditions is possible with the 
help of sampling of the number of groups into which the volume of agglomerated parts at an 
observed step is divided, coordinates of the centres of an alignment of inventory, and volumes 
of groups of made parts. 

Mathematically the task can be presented as finding the meaning of vector ( )jijijj QqcnY ,,,  

providing an extreme of the function 
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where jn  - number of subgroups on a stepj ; ijc  - coordinate of the centre of alignment of 

subgroups i  at step j ; ijq  - probability of hit of parts in subgroup i  at step j  ( 1
1

=∑
=

jn

i
ijq ); 

jQ  - volume of parts agglomerated at step j ; jiQ  - volume of subgroup i  at step j ; j  - the 

number of a step at realization of multi-step assembling mj ,1= ; m  - maximum number of 

steps ( ∞= ,2m ); ∑
=

=
m

j
jQQ

1

- total amount of agglomerated parts; )(1 xp jΣ  - density function 

of bushes agglomerated at step j , depending on magnitude of not assembling at step ( 1−j ); 

),,,(2 jjijij nqcxp Σ  - density function of shafts agglomerated at step j , depending on 

parameters jjiji nqc ,,  and magnitude of not assembling at step (1−j ); jP  - probability of not 
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assembling parts at step j ; jQ  - volume of not assembling parts at step j .  

If agglomerated volumes of parts at each step are equal to 

( mlmklkQ
m

QQ lk ,1;,1,;
1 ==≠⋅== ), then the expressions (38, 39) will become: 
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where P  - average overall probability of non-assembling, corresponding to the whole process. 

Let us mark that, as a whole, controlled selective assembling includes one- and multi-step 
algorithms in various combinations. The one-step algorithm was described earlier, and the 
multi-step can be divided into two aspects:  

-   multi-step selective assembling with a given volume of agglomerated parts; 
-   multi-step selective assembling with unlimited volume of agglomerated parts within m  

months ( ∞= ,2m ), with the presence or absence of scheduled monthly tasks.  
Multi-step selective assembling with a given volume of agglomerated parts is fulfilled by 

the following algorithm. Division of the agglomerated total number of parts Q  into m  groups 

for production and assembling at m  steps is carried out. Production of parts at the indicated 
steps is carried out in succession in time, i.e. each group is made keeping in mind the previous 
assembling at support of a minimum of incomplete production. Let us consider implementation 
of control by multi-step selective assembling on the example of a two-step process. 

Multi-step selective assembling occurs for a given volume of agglomerated parts according 
to the following algorithm: 

1.   Two semi-batches of parts are made, in volumes Q′ .  
2.   They are assembled in units, as a result of which incomplete production is made, in 

volume q′ .  

3.   Two semi-batches of parts are made, in volumes qQQ ′−′=′′ , the number of parts in 

the new batches being less than required in q′ . Displacement of distribution functions of these 

batches is selected so that the level of incomplete production at assembling of batches Q ′′  is 

minimal. That is, on assembling the required number of parts, as parts are added in a batch, 
dead assembling at the previous step comes in action. 

Thus, there is a process of control by selective assembling in dynamic conditions. 
The view of partition law of size deviation of bushes and shafts at the second step is 

definable. At this step a mix of detail parts remaining from the previous (first) step and 
manufactured at the current (second) step is formed. 

Let us mark out density functions of size deviations of two semi-batches of parts (bushes 
and shafts) as )(1 xp  and )(2 xp , respectively. In practice, it is possible to plot them by 

building up histograms. At the presence of sorting machines, this process is executed 
automatically. As a result of assembling at the previous step, there appeared incomplete 
production. 
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It is necessary to find distribution functions )(1 xp Σ  and )(2 xp Σ  of size deviations of shafts 

and bushes participating in assembling at the current (second) step, previously having spotted 
allocations of size deviations of parts )(11 xp  and )(21 xp , included in the incomplete 

production which has remained after the previous step. 
Let event A  be the hit of bushes in the given interval ];[ xβ−  at the next step of assembling 

process. Then )(AP  is the probability of that the bush has got in the given interval ];[ xβ− .  

By the formula of composite probability 
 

∑
=

⋅=
2

1

)/()()(
j

jj HAPHPAP ,     (42) 

 
event A  can occur under the condition of implementation of one of the hypotheses 21,HH . 

The hypothesis 1H  will be that at the current step of assembling, bushes manufactured at the 

given step are used. The hypothesis 2H  will be that at the current step of assembling, bushes 

are used that were manufactured on previous step and appeared not assembled. Thus )( 1HP  - 

probability that in assembling bushes manufactured at the current step participate. )( 2HP  - 

probability that in assembling bushes which were manufactured at the previous step and did not 
find mating parts participate. )/( 1HAP  - probability of hit of bushes in an interval ];[ xβ−  

under the condition of implementation of hypothesis 1H  equal distribution functions )(1 xF  of 

size deviation of parts (bushes) at the given step. )/( 2HAP  - probability of hit of bushes in an 

interval ];[ xβ−  under the condition of implementation of hypothesis 2H  equal distribution 

functions )(11 xF  of size deviation of parts (bushes) which have remained from the previous 

step. The densities corresponding to indicated distribution functions are marked out as )(1 xp , 

)(11 xp . 

Thus, the formula (42) will become 
 

)()()()()/()()/()()( 112112211 xFHPxFHPHAPHPHAPHPAP ⋅+⋅=⋅+⋅=  (43) 

 
that fully refers to parts 1 (bushes) and to parts 2 (shafts). According to the function and 
density function of shafts manufactured at the previous and given steps, these are marked out 
as )(2 xF , )(21 xF , )(2 xp , )(21 xp . 

The probability of implementation of hypothesis 2H  is equal to the relative share of parts 

not assembled at the previous step in the total the amount M  of agglomerated parts at the 
given step. Keeping in mind the above and formula (1), )( 1HP  and )( 2HP  are equal to: 

 

22)( k
M

Q
HP == ;       (44) 

121 )(1)( kHPHP =−= .      (45) 

 
Then the functions and density function of size deviation of bushes and shafts, obtained 

from (43) … (45), are accordingly equal to: 
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 )()()( 112111 xFkxFkxF ⋅+⋅=Σ ;   (46) 

 )()()( 212212 xFkxFkxF ⋅+⋅=Σ ;    (47) 

 )()()( 112111 xpkxpkxp ⋅+⋅=Σ ;    (48) 

 )()()( 212212 xpkxpkxp ⋅+⋅=Σ .    (49) 

 
Expressions for )(11 xp  and )(11 xF  are defined as follows: 
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where P  is determined according to (39), and in special cases to (41). 
Expressions for )(21 xp  and )(21 xF  are defined analogously: 

 

 








>

<
⋅

−
=

)()(,0

);()(,
5,0

)()(

)(

21

21
12

21

xpxp

xpxp
P

xpxp

xp   (52) 

 








>

<
⋅

−
=

);()(,0

);()(,
5,0

)()(

)(

21

21
12

21

xpxp

xpxp
P

xFxF

xF   (53) 

 
Let us give an instance of use of the received expressions. If permissible, densities of 

allocations of size deviation of the bushes and shafts correspond to Figure 4. 
In this case the number of intersection points of curves )(1 xp  and )(2 xp  is equal to 2, and 

)0()0( 21 pp <  (that is the ordinate of the density function of size deviation of bushes at that 

value is more than the ordinate of the density function of shafts, as shown in the graph). The 
view of densities )(11 xp  and )(21 xp  received according to expressions (50), (52) is presented 

in Figures 5 and 6. The view of densities )(1 xp Σ  and )(2 xp Σ  received according to 

expressions (48), (49) is presented in Figure 7. Magnitude of non-assembling, calculated 
according to formulas (38), (39), (48) … (53) is equal 0,00395 at displacement 28,02 ±=�  and 

equal volumes of subgroups. 
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Fig. 4. Densities of allocations of size deviations of shafts and bushes: 
)(1 xp  and )(2 xp  

 

 
 

Fig. 5. Density function of bushes which have remained from the previous step 
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Fig. 6. Density function of shafts which have remained from the previous step 
 

 
 

Fig. 7. Density function )(1 xp Σ  and )(2 xp Σ  size deviations of  

bushes and shafts, respectively 
 

The results of modelling are exemplified in Table 5. 
 
Table 5. Results of modelling of the process of multi-step controlled selective assembling 

with given volume of agglomerated parts 
 
n  ic  iq  P  

2 28,0±  − − 0,5 0,5 0,0395 
3 0 3,0±  0,1 45,02×  − 0,00184 
4 25,0±  4,0±  − 4,02×  1,02×  0,00141 
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If it is necessary to provide a set volume of assembled units, it is required to define the 
detail parts volume made at the second step. This procedure is executed through iteration (by 
selection) and does not involve any difficulty. 

Multi-step selective assembling with unlimited volume differs from the previous one in the 
absence of restriction for the total amount of parts Q  made during n months, and n is not 

defined beforehand. At each step (monthly program is accepted for a step) it is either one-step 
algorithm that is used, or a multi-step with a given volume of agglomerated parts given above. 
Generally, monthly programs can be various. At each step parts participate in assembling either 
left from the previous step, or produced during the current one. Their amount is selected for the 
given monthly program through  iteration, as mentioned above. Density and distribution 
functions of size deviations of parts either left from the previous step, or generating a mix on a 
given one, are defined with the help of the formulas (46)…(53). The monitoring of the 
assembling process is made with the help of the same parameters as in multi-step selective 
assembling with given volume of agglomerated parts. The basic difference between the given 
process and the previous one is that its duration and, consequently, the volume of agglomerated 
parts are not defined beforehand. 

Let us put the following instance of use of the built model. It is admissible that firmness of 
allocations of size deviation of bushes and shafts after step i  will match Figure 8. Here the 
kind of module of difference of density function of size deviations of bushes and shafts )(xq is 

adduced. At the indicated step of assembly, the number of cross points of curves )(1 xp  and 

)(2 xp  is equal to four, and )0()0( 21 pp >  (that is the ordinate of density function of size 

deviations of bushes at value 0=x  is more than ordinate of density function of shafts, Fig. 8). 
 

 
 

Fig. 8. Density functions )(1 xp  and )(2 xp  of size deviations of bushes and shafts, 

respectively, )()()( 21 xpxpxq −=  - module of difference of density function, jxt  - 

coordinates of abscissae of cross points, where 4=i  
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Let us mark out, through )(1,1 xp i−  and )(1,2 xp i− , the density function of size deviations of 

bushes and shafts remaining after non-assembling at step 1−i , and through )(,1 xp i Σ  and 

)(,2 xp i Σ  - the density function of size deviations of bushes and shafts which are forming a mix 

at step i . These curves are shown in Figures 7, 8. Coordinates of cross points jxt  of curves 

)(,1 xp i Σ  and )(,2 xp i Σ  were determined numerically with the help of a special procedure. 

The complexity of use of the built model consists in the volume that the process of an 
operation with )(,1 xp i Σ  and )(,2 xp i Σ , already after two steps, is extremely labour-consuming. 

Therefore, in the model their approximation by degree polynomials not below the tenth order is 
used by the least-squares method. Thus 
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where 0x  is a point of decomposition which is equal to null in the cases observed above. 

The results of modelling are exemplified in Table 6. 
 
Table 6. Results of modelling of multi-step controlled selective assembling process with 

unlimited volume of agglomerated parts while dividing the monthly batch of parts into two 
subgroups. 

 
Number of 

months 
1 2 3 4 5 6 �  18,0±  18,0±  18,0±  15,0±  17,0±  18,0±  

P  0,153 0,00435 0,00164 0,00935 0,00181 0,00358 
 
The researches carried out show that process monitoring of selective assembling allows to 

lower the level of incomplete production, and in some cases, as can be observed from the 
Tables, by 1,5 times. Thus the usage expediency of the suggested methods of selective 
assembling control is obvious, as these methods do not require any additional apparatus 
expenses, and consequently, any financial expenditure. 
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