PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Growth Rate of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rawapening Lake is one of Indonesia’s national priority lakes that is experiencing environmental problems which are urgently required to be solved due to its functions. The decline in the environmental quality of Rawapening Lake includes sedimentation, water pollution and excess of nutrients, especially Phosphorus (P) and Nitrogen (N) into the lake that induced uncontrolled growth of aquatic plants, one of which is water hyacinth (Eichhornia crassipes (Mart.) Solms). Many activities had been done to reduce the covering of water hyacinth in Rawapening Lake that tends to increase by the time, but no significant result has been achieved. Therefore, this research was conducted in order to study the growth rate of water hyacinth with mesocosm in Rawapening Lake as a baseline to develop suitable management. There were three different sites, namely: Site I in the floating net cage area (FNCA), Rowoboni Village, Site II in the natural area of Bejalen Village which is far from the aquaculture sites, and Site III in the upper reaches of the Tuntang river, Asinan Village. The research was performed in November-December 2019 with the measurements of growth rate, addition number clump and water hyacinth covering every week. The experiment was conducted in the 1 x 1 meter mesocosm, with three replication in every site. In every mesocosm water hyacinth with similar initial weight of 160 grams and number of leaves 6-7 strands were grown in the mesocosm. On day 7 (H7) the average wet weight of water hyacinth increased by 201%. In the fourth week (H28) the average wet weight of water hyacinth increased by 788% compared to the initial weight when planted. The highest relative growth rate (RGR) value of water hyacinth was at site III (7.26%/ day), followed by Site I (7.03%/day), and Site II (6.40%/day), respectively. The doubling time (DT) value of water hyacinth at the site I was 9.9 day, site II – 10.8 day, and site III – 9.6 day. One clump of water hyacinth weighing 160 grams was able to cover 1 m2 of mesocosm within 21 days. On the basis of these results, to manage water hyacinth blooms one has to consider its growth rate.
Rocznik
Strony
222--231
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • PhD Program of Environmental Studies, School of Postgraduate Studies, Universitas Diponegoro, Semarang, Indonesia
  • Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
  • Departement of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Semarang, Indonesia
  • School of Postgraduate Studies, Universitas Diponegoro, Semarang, Indonesia
Bibliografia
  • 1. Aloo, P., Ojwang, W., Omondi, R., Njiru, J.M., Oyugi, D., 2013. A Review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodiversity Journal, 4(4), 471–482. http://www.biodiversityjournal.com/pdf/4(4)_471–482.pdf
  • 2. Astuti, L.P., Indriatmoko, 2018. Ability Aquatic Plant to Reduce Organic Matter and Phosphate Pollution for Water Quality. Jurnal Teknologi Lingkungan. Juli. Vol. 19(2).
  • 3. Aswathy S., Gopikuttan A., 2015. Bibliometric observation of publication output of university teachers: A study with special reference to physics. J Scientometric Res., Jan–Apr 2015, 4(1). DOI:10.4103/2320–0057.156017
  • 4. Chander, S., Pompapathi, V., Gujrati, A., Singh, R.P., Chaplot, N., Patel, U.D., 2018. Growth of invasive aquatic macrophytes over Tapi river. In: The International Archives of the Photogrammetry, RS and Spatial Information Sciences, Vol. XLII5, 2018 ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India. https://doi.org/10.5194
  • 5. Chapin F.S. III., Matson P.A., Vitousek P., 2011. Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer Science & Business Media.
  • 6. Elella S.M.A., Hassan R.M.A., 2016. Water hyacinth growth rate in Egyptaion Irrigation Network. International Water Technology Journal, 6(4).
  • 7. Gaikwad R.P., Gavande S. 2017. Major Factors Contributing Growth of Water Hyacinth in Natural Water Bodies. International Journal of Engineering Research, 6(6), 304–306. DOI: 10.5958/2319–6890.2017.00024.1
  • 8. Goltenboth F., Timotius K.H., 1994. Danau Rawapening di Jawa Tengah, Indonesia, Satya Wacana University Press, Salatiga.
  • 9. Goshu, G., Aynalem, S., 2017. Problem overview of the Lake Tana Basin. Social and Ecological System Dynamics. Springer, pp. 9–23.
  • 10. Goshu, G., Koelmans, A., de Klein, J., 2017. Water quality of Lake Tana basin, Upper Blue Nile, Ethiopia. A review of available data. Social and Ecological System Dynamics. Springer, pp. 127–141.
  • 11. Grasset, C., Abril, G., Guillard, L., Delolme, C., Bornette, G., 2016. Carbon emission along a eutrophication gradient.
  • 12. Güereña, D. et al., 2015. Water hyacinth control in Lake Victoria : Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustainable Production and Consumption, 3 (March), pp. 59–69.
  • 13. Guitierrez E.L., Ruiz E.F., Uribe E.G., Maertinez J., 2001. Biomass and pro ductivity of water hyacinth and their application in control program, in Biolog ical and integrated control of water hyacinth Eichornia crassipes., D. ACIAR Proceeding, edited by M.H. Julien, M.P. Hill, T.D. Center, and D. Jianqing, pp. 102.
  • 14. Guignard M.S., Leitch A.R., Acquisti C., Eizaguirre C., Elser J.J., Hessen D.O., Jeyasingh P.D., Neiman M., Richardson A.E., Soltis P.S., Soltis D.E., Stevens C.J., Trimmer M., Weider L.J., Woodward G and Leitch I.J., 2017. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front. Ecol. Evol. 5, 70. doi: 10.3389/fevo.2017.00070
  • 15. Gupta A.K., Yadav D., 2020. Biological Control Of Water Hyacinth. Environmental Contaminants Reviews, 3(1), 37–39.
  • 16. Haryanto A., Triyono S., Siska P.M., 2020. Use of water hyacinth (Eichhornia crassipes) to treat biogas effluent of a tapioca industry wastewater treatment system. AgricEngInt: CIGR Journal Open, 22(4).
  • 17. Haseena M., Malik M.F., Javed A., Arshad S., Asif N., Zulfiqar S., Hanif J., 2017. Water pollution and human health. Environmental Risk Assessment and Remediation 1(3), 16–19.
  • 18. Hasibuan A.A., Yuniati R., Wardhana W., 2020. The growth rate and chlorophyll content of water hyacinth under different type of water sources. IOP Conf. Series: Materials Science and Engineering, 902, 012064. DOI:10.1088/1757–899X/902/1/012064
  • 19. Hidayati N., Soeprobowati T.R., Helmi M., 2018. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia. IOP Conf. Series: Earth and Environmental Science 142, 012016.
  • 20. Honlah E., Segbefia A.O., Appiah D.O., Mensah M., Atakora P.O., 2019. Effects of water hyacinth invasion on the health of the communities, and the education of children along River Tano and AbbyTano Lagoon in Ghana, Cogent Social Sciences, 5:1, 1619652, DOI: 10.1080/23311886.2019.1619652
  • 21. Cerveira Júnior W.R., Carvalho L.B.D., 2019. Control of water hyacinth: A short review. Communications in Plant Sciences, 9, 129-132.
  • 22. Kamau, A.N., Njogu, P., Kinyua, R., Sessay, M., 2015. Sustainability challenges and opportunities of generating biogas from water hyacinth in Ndunga Village, Kenya. Responsible natural resource economy programme issue paper 005/2015. Retrieved from https://www.africaportal.org/documents/14234/Issue_paper_0052015.pdf
  • 23. Kriticos D.J., Brunel S., 2016. Assessing and Managing the Current and Future Pest Risk from Water Hyacinth (Eichhornia crassipes) an Invasive Aquatic Plant Threatening the Environment and Water Security. PLoS One 11(8): e0120054. doi:10.1371/journal.pone.0120054
  • 24. Moyo P., Chapungu L., Mudzengi B., 2013. Effectiveness of water hyacinth (Eichhornia crassipes) in remediating polluted water: the case of Shagase river in Masvingo, Zimbabwe. Adv. Appl. Sci. Res. 4, 55–62.
  • 25. Nadjib M., 2016. The Problems of Collaborative Management in Rawapening Lake. Jurnal Masyarakat & Budaya, 18(3), 487–502.
  • 26. Ojo E.O., Okwu M., Otu L.E., Ayawale F.A., 2019. Initial assessment of reuse of sustainable wastes for fibreboard production: the case of waste paper and water hyacinth. Journal of Material Cycles and Waste Management, https://doi.org/10.1007/s10163–019–00871-z
  • 27. Pham K.H., Nguyen P.H.L., 2014. Study on treatment of domestic wastewater of an area in Tu Liem district, Hanoi, by water hyacinth. J. Viet. Env., 6(2), 126–131. DOI: 10.13141/jve.
  • 28. Piranti A.S., Rahayu D.S., Waluyo G., 2018. The Assessment of Rawapening Lake Water Quality Status. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 8(2), 151–160.
  • 29. Pratiwi F.D., Zainuri M., Purnomo P.W., Purwanti F., 2018. Stakeholder perception and participation in relation to success rate of water hyacinth control program in the Rawa Pening Lake. AACL Bioflux, 11(4), 967–979.
  • 30. Rahim A., Soeprobowati T.R., 2019. Water Pollution Index of Batujai Reservoir, Central Lombok Regency-Indonesia. Journal of Ecological Engineering, 20(3), 219–225 https://doi.org/10.12911/22998993/99822
  • 31. Salam H., Salwan, A., 2017. Water quality assessment of Al-Gharaf river, south of Iraq using multivariate statistical techniques. Journal of AlNahrain University 20(2), 114–122. https://doi.org/10.22401/JNUS.20.2.16
  • 32. Samuel, Suryati N.K., Adiansyah V., 2015. Ind. Fish. Res. J. 21, 9–18.
  • 33. Siahaan, N., Soeprobowati T.R., Purnaweni H. 2016. The growth of water hyacinth in Lake Toba, Samosir Regency. Proceedings of the National Seminar on Postgraduate Research Results.
  • 34. Soeprobowati T.R., 2017. Lake Management : Lesson Learn from Rawapening Lake. American Scientific Publishers. Advanced Science Letters, 23, 6495–6497. doi:10.1166/asl.2017.9664
  • 35. Soeprobowati T.R., Tandjung S.D., Sutikno, Hadisusanto S., Gell P., Hadiyanto, Suedy AW.A., 2016. The water quality parameters controlling diatoms assemblage in Rawapening Lake, Indonesia. J. Biodiversitas 17, 2. DOI: 10.13057/biodiv/d170239
  • 36. Soeprobowati T.R., Suedy S.W.A., 2010. Trophic status and management solutions. Journal of Science and Mathematics, 18, 158–169. [in Indonesian].
  • 37. Sudjarwo T., Nisyawati, Rosiana N., Mangunwardoyo W., 2014. The growth of water hyacinth (Eichhornia crassipes (Mart.) Solms) and water lettuce (Pistia stratiotes L.) in domestic wastewater in wastewater treatment plant (WWTP) bojongsoang, Bandung, Indonesia. Journal of Biodiversity and Environmental Sciences, 5(4), 393–401.
  • 38. Sutadian A.D., Muttila N., Yilmazd A.G., Pereraa B.J.C., 2017. Development of a water quality index for rivers in West Java Province, Indonesia. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.11.049
  • 39. Téllez T.R., López E., Granado G.L., Pérez E.A., López R.M., Guzmán J.M.S., 2008 The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions 3, 42–53.
  • 40. Ting W.H.T., Tan I.A .W., Salleh S.F., Wahab N.A., 2018. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. Journal of Water Process Engineering https://doi.org/10.1016/j.jwpe.2018.02.01
  • 41. Wang Z., Zhang Z., Zhang J., Zhang Y., Liu H., Yan S., 2012. Large scale utilization of water hyacinth for nutrient removal in lake Dianchi in China : the effect on the water quality, macrozoobenthos and zooplankton. Chemosphere 89, 1255–1261.
  • 42. Verma R., Sivappa 2017. Calculating growth rate of water hyacinth pollution wise (in relation to trophic state). International Journal of Engineering and Technical Research, 7(7).
  • 43. Worqlul A.W., Ayana E.K., Dile Y.T., Moges M. A., Dersseh M.G., Tegegne G., Kibret S., 2020. Spatiotemporal Dynamics and Environmental Controlling Factors of the Lake Tana Water Hyacinth in Ethiopia. Remote Sensing. Remote Sens. doi:10.3390/rs12172706. www.mdpi.com/journal/remotesensing
  • 44. MoE (Ministry of Environment), Gerakan Penyelamatan Danau (Germadan) Rawapening, MoE, Jakarta (2011).
  • 45. Rawapening Lake Management Plan, Directorate of Land Water Damage Control 2019. Ministry of Environment and Forestry, Republic of Indonesia.
  • 46. UNDP. 2015. Human Development Report. United Nations Development Programme. New York.
  • 47. Presidential Regulation No. 18, Year 2020, Concering The National Medium-Term Development Plan 2020-2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d89fb2f9-8ad5-40de-9780-bc97f9f4aa0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.