Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Skuteczność wykorzystania sztucznej inteligencji w spersonalizowanych i adaptacyjnych metodach szkolenia pracowników w miejscu pracy
Języki publikacji
Abstrakty
This study explores the role of Artificial Intelligence (AI) in training, focusing on AI-driven adaptive programs. This research examines the relationship between AI-driven training programs, employee motivation, training effectiveness, and work performance. A cross-sectional study was conducted using structured questionnaires distributed electronically to employees in the Jabodetabek area, with data collected via a 1-5 Likert scale. T-Statistics and R-Square tests analyzed the relationships between variables. Results reveal that AI Adaptability has no significant impact on training effectiveness or work performance. Instead, employee motivation and training effectiveness show a stronger, positive influence on work performance, with R-Square values of 0.980 and 0.975, respectively. The study concludes that, despite AI’s growing role in human resource management, technology alone does not directly enhance work performance. Human-centered factors, such as motivation, remain crucial in driving successful training outcomes and improving job performance.
Niniejsze badanie dotyczy roli sztucznej inteligencji (AI) w szkoleniach, ze szczególnym uwzględnieniem programów adaptacyjnych opartych na AI. Badanie analizuje związek między programami szkoleniowymi opartymi na AI, motywacją pracowników, skutecznością szkoleń i wydajnością pracy. Przeprowadzono badanie przekrojowe z wykorzystaniem ustrukturyzowanych kwestionariuszy rozesłanych drogą elektroniczną do pracowników w regionie Jabodetabek, a dane zebrano za pomocą skali Likerta od 1 do 5. Statystyki T i testy R-kwadratu pozwoliły przeanalizować zależności między zmiennymi. Wyniki pokazują, że adaptacyjność AI nie ma znaczącego wpływu na skuteczność szkoleń ani wydajność pracy. Zamiast tego silniejszy, pozytywny wpływ na wydajność pracy mają motywacja pracowników i skuteczność szkoleń, których wartości R-Square wynoszą odpowiednio 0,980 i 0,975. W badaniu stwierdzono, że pomimo rosnącej roli sztucznej inteligencji w zarządzaniu zasobami ludzkimi, sama technologia nie wpływa bezpośrednio na poprawę wyników pracy. Czynniki związane z człowiekiem, takie jak motywacja, pozostają kluczowe dla osiągnięcia pozytywnych wyników szkoleń i poprawy wyników pracy.
Czasopismo
Rocznik
Tom
Strony
213--231
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Bina Nusantara University, Indonesia
- Bina Nusantara University, Indonesia
autor
- Bina Nusantara University, Indonesia
autor
- Bina Nusantara University, Indonesia
Bibliografia
- 1.Abasaheb, S. A., Subashini, R., (2024). Enhancing HR Efficiency Through the Integration of Artificial Intelligence and Internet of Things: A Study on AI Implementation in Human Resource Management. EAI Endorsed Transactions on Scalable Information Systems, 11(2), 1-11.
- 2.Ahlstedt, C., Moberg, L., Brulin, E. and Nyberg, A., (2023). Do illegitimate tasks matter for registered nurses’ work motivation? A cross-sectional study based on a nationally representative sample of Swedish nurses. International Journal of Nursing Studies Advances, 5, 100159.
- 3.Alam, M. N., Hassan, M. M., Bowyer, D. and Reaz, M., (2020). The effects of wages and welfare facilities on employee productivity: Mediating role of employee work motivation. Australasian Accounting, Business and Finance Journal, 14(4), 38-60.
- 4.Aliyyah, N., Prasetyo, I., Rusdiyanto, Rochman, A. S. and Kalbuana, N., (2022). What affects Employee Performance through Work Motivation?
- 5.Ángeles López-Cabarcos, M., Vázquez-Rodríguez, P. and Quiñoá-Piñeiro, L. M., (2022). An approach to employees’ job performance through work environmental variables and leadership behaviours. Journal of Business Research, 140, 361-369.
- 6.Bao, N., Zhang, T., Huang, R., Biswal, S., Su, J. and Wang, Y., (2023). A deep transfer learning network for structural condition identification with limited real-world training data. Structural Control and Health Monitoring, 2023, 1-18.
- 7.Bragas, C., Bragas Dr, L. F. and Soliman Dr, C., (2022). The changing workforce and its implications to productivity: A literature review. Sachetas, 1(2), 55-69.
- 8.Chitranshi, J., Chopra, K. and Banerjee, P., (2024). Impact of artificial intelligence in transforming and replacing traditional learning and development of employees. Foresight, 27(3), 524-542.
- 9.Chuang, S., (2021). An empirical study of displaceable job skills in the age of robots. European Journal of Training and Development, 45(6/7), 617-632.
- 10.Dachner, A. M., Ellingson, J. E., Noe, R. A. and Saxton, B. M., (2021). The future of employee development. Human Resource Management Review, 31(2), 3.
- 11.Diem Vo, T. T., Velásquez, K. and Chung-Wen, C., (2022). Work Motivation : The Roles of Individual Needs and Social Conditions. Behavioral Sciences, 12(2), 49.
- 12.Divya, Narwal, M., (2023). Digital Distractions in the Workplace: Exploring Cyberloafing Impact on Employee Behaviour and Innovation. Virtual Economics, 6(4), 7-24.
- 13.El-Sherbeeny, A. M., Alsetoohy, O., Sheikhelsouk, S., Liu, S. and Abou Kamar, M., (2024). Enhancing hotel employees’ well-being and safe behaviors: The influences of physical workload, mental workload, and psychological resilience. Oeconomia Copernicana, 15(2), 765-807.
- 14.Faqihi, A., Miah, S. J., (2023). Artificial Intelligence-Driven Talent Management System: Exploring the Risks and Options for Constructing a Theoretical Foundation. Journal of Risk and Financial Management, 16(1), 31.
- 15.Gavino, M. C., Lambert, J. R., Elgayeva, E. and Akinlade, E., (2021). HR practices, customer-focused outcomes, and OCBO: The POS-engagement mediation chain. Employee Responsibilities and Rights Journal, 33(2), 77-97.
- 16.Graf, A., (2023). Exploring the role of personalization in adaptive learning environments. International Journal Software Engineering and Computer Science, 3(2), 50-56.
- 17.Gupta, U., Garg, P., (2023). Integrating artificial intelligence into training and development practices a systematic review. International Journal of Progressive Research In Engineering Management And Science, 3(7).
- 18.Herawati, E., Tan, S., Lubis, T. A. and Hidayat, M. S., (2021). The role of employee performance mediation on organizational performance. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 8(6), 585-594.
- 19.Hosen, S., Hamzah, S. R. ah, Arif Ismail, I., Noormi Alias, S., Faiq Abd Aziz, M. and Rahman, M. M., (2024). Training and development, career development, and organizational commitment as the predictor of work performance. Heliyon, 10(1), e23903.
- 20.Huang, Y., Gursoy, D., (2024). How does AI technology integration affect employees’ proactive service behaviors? A transactional theory of stress perspective. Journal of Retailing and Consumer Services, 77, 103700.
- 21.Imron, A., Putra, M. R., Syahputra, I. E., PY, I. D. and Fadhilah, A. R. N., (2024). Adaptation of Employee Development with Artificial Intelligence Virual Reality in a Power Generation Company. Widya Cipta: Jurnal Sekretari Dan Manajemen, 8(1), 80-85.
- 22.Itam, U. J., Swetha, M., (2022). Examining the structural relationship between employee branding, TQHRM and sustainable employability outcome in Indian organized retail. Total Quality Management Journal, 34(October), 5-28.
- 23.Kaizer, B. M., Silva, C. E. S., de Pavia, A. P. and Zerbini, T., (2020). E-learning training in work corporations: a review on instructional planning. European Journal of Training and Development, 44(6/7), 615-636.
- 24.Kang, Y. C., Hsiao, H. S. and Ni, J. Y., (2022). The Role of Sustainable Training and Reward in Influencing Employee Accountability Perception and Behavior for Corporate Sustainability. Sustainability (Switzerland), 14(18), 11589.
- 25.Lane, M., Williams, M. and Broecke, S., (2023). The impact of AI on the workplace: Main findings from the OECD AI surveys of employers and workers (No. 288). OECD Publishing.
- 26.Li, Z.-X., Liu, Y. and Ernst, R., (2023). A dynamic 2000—540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238, 104336.
- 27.Maity, S., (2019). Identifying opportunities for artificial intelligence in the evolution of training and development practices. Journal of Management Development, 38(8), 651-663.
- 28.Mäntymäki, M., Minkkinen, M., Birkstedt, T. and Viljanen, M., (2022). Defining organizational AI governance. AI Ethics, 2(4), 603-609.
- 29.Mehner, L., Rothenbusch, S. and Kauffeld, S., (2024). How to maximize the impact of workplace training: a mixed-method analysis of social support, training transfer and knowledge sharing. European Journal of Work and Organizational Psychology, 34(2), 201-217.
- 30.Memon, M., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F. and Huei Cham, T., (2020). Sample Size for Survey Research. Journal of Applied Structural Equation Modeling, 4(2), 2590-4221.
- 31.Morozevich, E., Korotkikh, V. and Kuznetsova, Y., (2022). The development of a model for the personalized learning path using machine learning methods. Business Informatics, 16(2), 21-35.
- 32.Na, S. R., (2024). Application of artificial intelligence in employee training and development. Mathematical Modeling and Algorithm Application, 1(1), 26-28.
- 33.Nusraningrum, D., Rahmawati, A., Wider, W., Jiang, L. and Udang, L. N., (2024). Enhancing employee performance through motivation: the mediating roles of green work environments and engagement in Jakarta’s logistics sector. Frontiers in Sociology, 9, 1-8.
- 34.Okatta, C. G., Ajayi, F. A. and Olawale, O., (2024). Navigating the future: Integrating Ai and Machine Learning in hr practices for a digital workforce. Computer Science and IT Research Journal, 5(4), 1008-1030.
- 35.Pratt, M., Boudhane, M., Taskin, N. and Cakula, S., (2021). Use of AI for improving employee motivation and satisfaction. In Educating Engineers for Future Industrial Revolutions (pp. 289-299). Springer International Publishing.
- 36.Rathnayake, C., Gunawardana, A., (2023). The Role of Generative AI in Enhancing Human Resource Management Recruitment, Training, and Performance Evaluation Perspectives. International Journal of Social Analytics, 8(11), 13-22.
- 37.Ropalatha, Sucharita., (2024). Navigating the Ai frontier: A study of Ai integration in it employee training and development. Educational Administration Theory and Practice, 30(5), 1079-1085.
- 38.Rožman, M., Tominc, P. and Milfelner, B., (2023). Maximizing employee engagement through artificial intelligent organizational culture in the context of leadership and training of employees: Testing linear and non-linear relationships. Cogent Business and Management, 10(2), 2248732.
- 39.Sucharita, K., Seethalakshmi, R., (2022). Artificial Intelligence In Training And Development For Employees With Reference To Selected It Companies. Journal of Positive School Psychology, 6(9), 2700-2715.
- 40.Tushar, H., Sooraksa, N., (2023). Global employability skills in the 21st century workplace: A semi-systematic literature review. Heliyon, 9(11), e21023.
- 41.Tusquellas, N., Palau, R. and Santiago, R., (2024). Analysis of the potential of artificial intelligence for professional development and talent management: A systematic literature review. International Journal of Information Management Data Insights, 4(2), 100288.
- 42.van der Poll, A. E., van Zyl, I. and Kroeze, J. H., (2021). Social Exclusion in Gamified Information Systems. In Responsible AI and Analytics for an Ethical and Inclusive Digitized Society (pp. 774-786). Springer International Publishing.
- 43.Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N. and Haenlein, M., (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889-901.
- 44.Wahyudi, A. S., Syauki, A. Y., Sunaeni, Judijanto, L. and Irfan, M., (2023). Strategies for Enhancing Employee Retention: A Qualitative Study on Modern Human Resource Management Practices. International Journal of Science and Society, 5(5), 566-573.
- 45.Yimam, M. H., (2022). Impact of training on employees performance: A case study of Bahir Dar university, Ethiopia. Cogent Education, 9(1).
- 46.Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J.-B., Yuan, J. and Li, Y., (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 1-18.
- 47.Zirar, A., Ali, S. I. and Islam, N., (2023). Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124, 102747.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d898cca5-7f35-4946-af3a-443dda2acbf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.