Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.
Słowa kluczowe
Opis fizyczny
Bibliogr. 23 poz., il.
  • Fuel Cell Department, Institute of Power Engineering, Augustowka 36, 02-981 Warszawa, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • [1] KIRUBAKARAN A., JAIN S., AND NEMA R.K.: A review of fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 13(2009), 2430-2440.
  • [2] BLUM L., DEJA R., PETERS R., AND STOLTEN D.: Comparison of efficiencies of low, mean and high temperature fuel cell systems. Int. J. Hydrogen Energ. 36(2011), 11056-11067.
  • [3] KENDALL K., FINNERTY C.M., TOMPSETT G.A., WINDIBANK P., AND COE N.: Rapid heating SOFC system for hybrid applications. Electrochemistry 68(2000), 6, 403-406.
  • [4] BUJALSKI W., PARAGREEN J., READE G., PYKE S. AND KENDALL K.: Cycling studies of SOFCs. J. Power Spurces 157(2006), 745-749.
  • [5] SARANTARIDIS D. AND ATKINSON A.: Redox cycling of Ni-based solid oxide fuel cell anodes: A review. Fuel Cells 7(2007), 3, 246-258.
  • [6] JIANG Y. AND VIRKAR A.V.: A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J. Electrochem. Soc. 148(2001), 7 A706-A709.
  • [7] US Department of Energy Office of Fossil Energy National Energy Technology Laboratory. Fuel Cell Handbook, 7th Edn. EG G Technical Services, Inc., 2004.
  • [8] STANIFORTH J. AND ORMEROD R.M.: Running solid oxide fuel cells on biogas. Ionics 9(2003), 5-6, 336-341.
  • [9] YOKOKAWA H.: Understanding materials compatibility. Ann. Rev. Mater. Res. 33(2003), 581-610.
  • [10] O'HAYRE R., CHA S.W., COLELLA W., AND PRINZ F.: Fuel cell fundamentals. Wiley, 2005.
  • [11] WOJCIK A., MIDDLETON H., DAMOPOULOS I., AND VAN HEERLE J.: Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 118(2003), 1-2, 342-348.
  • [12] MURRAY E.P., HARRIS S.J., AND JEN H.: Solid oxide fuel cells utilizing dimethyl ether fuel. J. Electrochem. Soc.149(202), A1127-A1131.
  • [13] KUPECKI J., JEWULSKI J., AND MILEWSKI J.: Clean Energy for Better Environment. Chap. Multi-level Mathematical Modeling of Solid Oxide Fuel Cells, 53-85. Number DOI: 10.5772/50724. Intech. Rijeka, 2012.
  • [14] KUPECKI J., BADYDA K.: SOFC-based micro-CHP system as an example of efficient power generation unit. Arch. Termodyn. 32(2011), 3, 33-43.
  • [15] BADYDA K.: Selected aspects of mathematical modeling of power systems. Prace naukowe Politechniki Warszawskiej, 189. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011.
  • [16] MUNZEBERG H.G. AND KURZKE J.: Gas Turbines - Performance and Optimization. Springer-Verlag, 1977 (in German).
  • [17] KAYS W.M. AND LONDON A.L.: Compact Heat Exchangers, 3rd Edn. McGraw-Hill, New York 1984.
  • [18] INCROPERA F.P. AND DEWITT D.P.: Fundamentals of Heat and Mass Transfer, 3rd Edn. Wiley, New York 1990.
  • [19] BADYDA K. AND MILLER A.: Gas Turbines and Power Systems with Gas Turbines. Kaprint Publishing, 2011 (in Polish).
  • [20] ANGLART H.: Thermal-hydraulic in Nuclear Systems. Warsaw University of Technology Publishing House, Warsaw 2013.
  • [21] CENGEL Y.: Heat and Mass Transfer. Mc Graw Hull, New York 2007.
  • [22] MOODY L.F.: Friction factors for pipe flow. Trans. ASME, 66(1944), 8, 671-684.
  • [23] GREW K.N. AND CHIU W.K.S.: A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J. Power Source 199(2012), 1-13.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.