PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analysis of Cauchy problem with fractal-fractional differential operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cauchy problems with fractal-fractional differential operators with a power law, exponential decay, and the generalized Mittag-Leffler kernels are considered in this work. We start with deriving some important inequalities, and then by using the linear growth and Lipchitz conditions, we derive the conditions under which these equations admit unique solutions. A numerical scheme was suggested for each case to derive a numerical solution to the equation. Some examples of fractal-fractional differential equations were presented, and their exact solutions were obtained and compared with the used numerical scheme. A nonlinear case was considered and solved, and numerical solutions were presented graphically for different values of fractional orders and fractal dimensions.
Wydawca
Rocznik
Strony
art. no. 20220181
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
  • Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University College of Science, P.O. Box 90950, 11623, Riyadh, Saudi Arabia
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of the Free State, 9300 Bloemfontein, South Africa
  • Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
  • Department of Mathematics, College of Science, King Saud University, P.O. Box 1142, Riyadh 11989, Saudi Arabia
Bibliografia
  • [1] T. A. A. Broadbent and M. Kline, The history of ancient Indian mathematics by C. N. Srinivasiengar. Math. Gaz. 52 (1967), no. 381, 307–308.
  • [2] A. I. Sabra, Theories of Light: From Descartes to Newton, Cambridge University Press. 1981. p. 144, ISBN 978-0521284363.
  • [3] H. Anton, I. C. Bivens, and S. Davis, Calculus: Early Transcendentals Single and Multivariable (8th ed.), New York: Wiley, 2005. ISBN 978-0-471-47244-5.
  • [4] H. Eves, An Introduction to the History of Mathematics (6th ed.), Brooks Cole, 1990, ISBN 978-0-03-029558-4.
  • [5] L. Evans, Partial Differential Equations. American Mathematical Society. 1999. p. 63, ISBN 0-8218-0772-2.
  • [6] J. Liouville, Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions, J. de. l'École Polytechnique Paris. 13 (1832), 1–69.
  • [7] A. T. Nguyen, N. H. Tuan, and C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. Adv. Nonlinear Anal. 12 (2023), no. 1, 97–116.
  • [8] N. D. Phuong, D. Kumar, and H. D. Binh, Determine unknown source problem for time fractional pseudo-parabolic equation with Atangana-Baleanu Caputo fractional derivative. AIMS Math. 7 (2022), no. 9, 16147–16170. doi: http://doi.org/10.3934/math.2022883.
  • [9] H. T. Nguyen, N. A. Tuan, and C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations. Discret. Contin. Dyn. Syst. 42 (2022), no. 6, 2637–2665.
  • [10] J. Liouville, Mémoire sur le calcul des différentielles à indices quelconques, J. de. l'École Polytechnique Paris 13 (1832): 71–162.
  • [11] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor (PDF), J. de. Math. Pures et. Appl. 4 (1892), no. 8, 101–186.
  • [12] M. Caputo, Linear model of dissipation whose Q is almost frequency independent. II, Geophys. J. Int. 13 (1967), no. 5, 529–539.
  • [13] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), no. 2, 73–85.
  • [14] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), no. 2, 763–769.
  • [15] D. Baleanu, S. S. Sajjadi, A. Jajarmi, and J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus. 134 (2019), 181.
  • [16] W. Chen, Time–space fabric underlying anomalous diffusion, Chaos Solitons Fractals 28 (2006), no. 4, 923–929.
  • [17] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102 (2017), 396–406.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d897f027-1736-4b9c-bcba-24f94902c523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.