PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

Treść / Zawartość
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li4Ti5O12 (LTO) particle compositions are made and characterized by N2 adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO4 and ZrO2.
Rocznik
Strony
51--66
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • 1Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
autor
  • 1Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
autor
  • 1Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
Bibliografia
  • 1. Armand M., Tarascon J.M., 2008. Building better batteries. Nature, 451, 652-657. DOI: 10.1038/451652a.
  • 2. Asbrink S., Norrby L.J., 1970. A refinement of crystal structure of copper(2) oxide with a discussion of some exceptional E.s.d.'s. Acta Crystall. B-Stru., B 26, 8-15. DOI: 10.1107/S0567740870001838.
  • 3. Athanassiou E.K., Grass R.N., Stark W.J., 2006. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 17, 1668-1673. DOI: 10.1088/0957-4484/17/6/022.
  • 4. Birozzi A., Copley M., von Zamory J., Pasqualini M., Calcaterra S., Nobili F., Di Cicco A. Rajantie H., Briceno M., Bilbé E., Cabo-Fernandez L., Hardwick L.J., Bresser D. Passerini St., 2015. Scaling up "nano" Li4Ti5O12 for high-power lithium-ion anodes using large flame spray pyrolysis. J. Electrochem. Soc., 162, A2331-A2338. DOI: 10.1149/2.0711512jes.
  • 5. Bresser D., Paillard E., Copley M., Bishop P., Winter M., Passerini S., 2012. The importance of "going nano" for high power battery materials. J. Power Sources, 219, 217-222. DOI: 10.1016/J.Jpowsour.2012.07.035.
  • 6. Curtet R., 1958. Confined jets and recirculation phenomena with cold air. Combust Flame, 2, 383-411. DOI:10.1016/0010-2180(58)90032-4.
  • 7. Deschanvres A., Raveau B., Sekkal Z., 1971. Synthesis and crystallographic study of new solid solution of spinelle Li1+xTi2-xO4 less than or equal to x less than or equal to 0,333. Mater. Res. Bull., 6, 699-704. DOI: 10.1016/0025-5408(71)90103-6.
  • 8. Du Pasquier A., Huang C.C., Spitler T., 2009. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J. Power Sources, 186, 508-514. DOI: 10.1016/J.Jpowsour.2008.10.018.
  • 9. Ernst F.O., Kammler H.K., Roessler A., Pratsinis S.E., Stark W.J., Ufheil J., Novák P., 2007. Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater. Chem. Phys., 101, 372-378. DOI: 10.1016/j.matchemphys.2006.06.014.
  • 10. Ferg E., Gummow R.J., de Kock A., Thackeray M.M., 1994. Spinel anodes for lithium-ion batteries. J. Elchem Soc., 141, L147-L150. DOI: 10.1149/1.2059324.
  • 11. Gaberscek M., Dominko R., Jamnik J., 2007. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun., 9, 2778-2783. DOI: 10.1016/J.Elecom.2007.09.020.
  • 12. Gamba I.L., Damian S.M., Estenoz D.A., Nigro N., Storti M.A., Knoeppel D., 2012. Residence time distribution determination of a continuous stirred tank reactor using computational fluid dynamics and its application on the mathematical modeling of styrene polymerization. Int. J. Chem. React. Eng., 10, 1-32. DOI: 10.1515/1542-6580.3057.
  • 13. Groehn A.J., Pratsinis S.E., Sanchez-Ferrer A., Mezzenga R., Wegner K., 2014. Scale-up of nanoparticlesynthesis by flame spray pyrolysis: The high-temperature particle residence time. Ind. Eng. Chem. Res., 53,10734-10742. DOI: 10.1021/Ie501709s.
  • 14. Groehn A.J., Pratsinis S.E., Wegner K., 2012. Fluid-particle dynamics during combustion spray aerosol synthesisof ZrO2. Chem. Eng. J., 191, 491-502. DOI: 10.1016/J.Cej.2012.02.093.
  • 15. He Y.B., Li B., Liu M., Zhang C., Lv W., Yang C., Li J., Du H., Zhang B., Yang Q.H., Kim J.K., Kang F., 2012. Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2, 1-9. DOI: 10.1038/srep00913.
  • 16. Hsiao K.C., Liao S.C., Chen J.M., 2008. Microstructure effect on the electrochemical property of Li4Ti5O12 as ananode material for lithium-ion batteries. Electrochim. Acta, 53, 7242-7247. DOI: 10.1016/J.Electacta.2008.05.002.
  • 17. Hudak N.S., Huber D.L., 2012. Size effects in the electrochemical alloying and cycling of electrodeposited aluminum with lithium. J. Electrochem. Soc., 159, A688-A695. DOI: 10.1149/2.023206jes.
  • 18. Jiang J.W., Chen J., Dahn J.R., 2004. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry. J. Electrochem. Soc., 151, A2082-A2087. DOI: 10.1149/1.1817698.
  • 19. Johannessen T., Pratsinis S.E., Livbjerg H., 2000. Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chem. Eng. Sci., 55, 177-191. DOI: 10.1016/S0009-2509(99)00183-9.
  • 20. Karhunen T., Lähde A., Leskinen J., Büchel R., Waser O., Tapper U., Jokiniemi J., 2011. Transition metal-doped lithium titanium oxide nanoparticles made using flame spray pyrolysis. ISRN Nanotechnology, 2011, 1-6. DOI: 10.5402/2011/180821.
  • 21. Kavan L., Prochazka J., Spitler T.M., Kalbac M., Zukalova M.T., Drezen T., Gratzel M., 2003. Li insertion into Li4Ti5O12 (Spinel) - Charge capability vs. particle size in thin-film electrodes. J. Electrochem. Soc., 150, A1000- A1007. DOI: 10.1149/1.1581262.
  • 22. Kho Y.K., Teoh W.Y., Madler L., Amal R., 2011. Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis. Chem. Eng. Sci., 66, 2409-2416. DOI: 10.1016/J.Ces.2011.02.058.
  • 23. Krumeich F., Waser O., Pratsinis S.E. 2016. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis. J. Solid State Chem. 242, 96-102. DOI: 10.1016/j.jssc.2016.07.002
  • 24. Laruelle S., Grugeon S., Poizot P., Dolle M., Dupont L., Tarascon J.M., 2002. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 149, A627-A634. DOI: 10.1149/1.1467947.
  • 25. Levenspiel O., 1999. Chemical reaction engineering. Wiley, New York.
  • 26. Madler L., Kammler H.K., Mueller R., Pratsinis S.E., 2002. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci., 33, 369-389. DOI: 10.1016/S0021-8502(01)00159-8.
  • 27. Madler L., Stark W.J., Pratsinis S.E., 2002. Flame-made ceria nanoparticles. J. Mater. Res., 17, 1356-1362. DOI: 10.1557/jmr.2002.0202.
  • 28. Magnussen B.F., Hjertager B.H., 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. Int. Combust., 16, 719-729. DOI: 10.1016/S0082-0784(77)80366-4.
  • 29. Morrison P.W., Raghavan R., Timpone A.J., Artelt C.P., Pratsinis S.E., 1997. In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater., 9, 2702-2708. DOI: 10.1021/cm960508u.
  • 30. Mueller R., Kammler H.K., Pratsinis S.E., Vital A., Beaucage G., Burtscher P., 2004. Non-agglomerated dry silica nanoparticles. Powder Technol., 140, 40-48. DOI: 10.1016/J.Powtec.2004.01.004\.
  • 31. Mueller R., Madler L., Pratsinis S.E., 2003. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci., 58, 1969-1976. DOI: 10.1016/s0009-2509(03)00022-8
  • 32. Naoi K., Naoi W., Aoyagi S., Miyamoto J., Kamino T., 2013. New generation "nanohybrid supercapacitor". Accounts Chem. Res., 46, 1075-1083. DOI: 10.1021/Ar200308h.
  • 33. Nowack L.V., Waser O., Yarema O., Wood V., 2013. Rapid, microwave-assisted synthesis of battery-grade lithium titanate (LTO). RSC Adv., 3, 15618-15621. DOI: 10.1039/C3ra43237h.
  • 34. Ohzuku T., Ueda A., Yamamoto N., 1995. Zero-strain insertion material of Li[Li1/3ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc., 142, 1431-1435. DOI: 10.1149/1.2048592.
  • 35. Olfe D.B., 1961. Mean beam length calculations for radiation from non-transparent gases. J. Quant. Spectrosc. Ra., 1, 169-176. DOI: 10.1016/0022-4073(61)90022-X.
  • 36. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 144, 1188-1194. DOI: 10.1149/1.1837571
  • 37. Poullikkas A., 2013. A comparative overview of large-scale battery systems for electricity storage. Renew. Sust. Energ. Rev., 27, 778-788. DOI: 10.1016/J.Rser.2013.07.017.
  • 38. Pratsinis S.E., 1998. Flame aerosol synthesis of ceramic powders. Prog. Energ. Combust., 24, 197-219. DOI: 10.1016/S0360-1285(97)00028-2.
  • 39. Rudin T., Wegner K., Pratsinis S.E., 2011. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. J. Nanopart. Res., 13, 2715-2725. DOI: 10.1007/s11051-010-0206-x.
  • 40. Sotiriou G.A., Sannomiya T., Teleki A., Krumeich F., Voros J., Pratsinis S.E., 2010. Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv. Funct. Mater., 20, 4250-4257. DOI: 10.1002/Adfm.201000985.
  • 41. Streltsov V.A., Belokoneva E.L., Tsirelson V.G., Hansen N. K., 1993. Multipole analysis of the electron-density in triphylite, LiFePO4, using X-ray-diffraction data. Acta Crystallogr. B, 49, 147-153. DOI: 10.1107/S0108768192004701.
  • 42. Strobel R., Pratsinis S.E., 2007. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem., 17, 4743-4756. DOI: 10.1039/b711652g.
  • 43. Strobel R., Pratsinis S.E., 2009. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol., 20, 190-194. DOI: 10.1016/j.apt.2008.08.002.
  • 44. Teleki A., Heine M.C., Krumeich F., Akhtar M.K., Pratsinis S.E., 2008. In situ coating of flame-made TiO2 particles with nanothin SiO2 films. Langmuir, 24, 12553-12558. DOI: 10.1021/La801630z.
  • 45. Teleki A., Pratsinis S.E., Kalyanasundaram K., Gouma P.I., 2006. Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuator B-Chem., 119, 683-690. DOI: 10.1016/j.snb.2006.01.027.
  • 46. Teoh W.Y., Amal R., Madler L., 2010. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2, 1324-1347. DOI: 10.1039/C0nr00017e.
  • 47. Vlad A., Singh N., Rolland J., Melinte S., Ajayan P.M., Gohy J.F., 2014. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep., 4, 1-7. DOI: 10.1038/Srep04315.
  • 48. Wagemaker M., van Eck E.R.H., Kentgens A.P.M., Mulder F.M., 2009. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B, 113, 224-230. DOI: 10.1021/Jp8073706.
  • 49. Waser O., Buchel R., Hintennach A., Novák P., Pratsinis S.E., 2011. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. J. Aerosol Sci., 42, 657-667. DOI: 10.1016/J.Jaerosci.2011.06.003.
  • 50. Waser O., Groehn A.J., Eggersdorfer M.L., Pratsinis S.E., 2014. Air entrainment during flame aerosol synthesis of nanoparticles. Aerosol Sci. Technol., 48, 1195-1206. DOI: 10.1080/02786826.2014.969800.
  • 51. Waser O., Hess M., Guntner A., Novák P., Pratsinis S.E., 2013. Size controlled CuO nanoparticles for Li-ion batteries. J. Power Sources, 241, 415-422. DOI: 10.1016/J.Jpowsour.2013.04.147.
  • 52. Wegner K., Pratsinis S.E., 2003. Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem. Eng. Sci., 58, 4581-4589. DOI: 10.1016/J.Ces.2003.07.010.
  • 53. Wegner K., Schimmoeller B., Thiebaut B., Fernandez C., Rao T.N., 2011. Pilot plants for industrial nanoparticle production by flame spray pyrolysis. Kona Powder Part J., 251-265. DOI: 10.14356/kona.2011025.
  • 54. Whitney E., 1994. Ceramic cutting tools : materials, development, and performance. Noyes Publications, Park Ridge, New Jersey, USA.
  • 55. Zheng H.H., Li J., Song X.Y., Liu G., Battaglia V.S., 2012. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim Acta, 71, 258-265. DOI: 10.1016/J.Electacta.2012.03.161.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d897a471-58eb-4ea8-92da-08c1c7555a08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.