PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep Eutectic Solvents and Their Uses for Air Purification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical compounds released into the air by the activities of industrial plants and emitted from many other sources, including in households (paints, waxes, cosmetics, disinfectants, plastic (PVC) flooring), may affect the environment and human health. Thus, air purification is an important issue in the context of caring for the condition of the environment. Deep eutectic solvents (DESs) as liquids with environmentally friendly properties (non-volatile, biodegradable, non-toxic, cheap, easy to prepare) are a promising solution to this problem. This paper reviews the advances made in the application of DESs as sorbents for the purification of atmospheric and indoor air. The potential of DESs and their subclasses (including SUPRAmolecular Deep Eutectic Solvents, SUPRADESs) applications in air purification processes were also summarized.The authors believe that this review can be useful for future readers as a starting point for research in the field of DESs and their application in air purification.
Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80–233 Gdańsk, Poland
  • Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80–233 Gdańsk, Poland
  • BioTechMed Center, ul. G. Narutowicza 11/12, 80–233 Gdańsk, Poland
  • Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80–233 Gdańsk, Poland
Bibliografia
  • 1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 1, 70–71.
  • 2. Abouheif, S.A., Sallam, S.M., El Sohafy, S.M., Kassem, F.F., Shawky, E. 2022. Optimization of terpene lactones and ginkgolic acids extraction from Ginkgo biloba L. leaves by natural deep eutectic solvents using experimental design and HPTLC-MS analysis. Microchemical Journal, 176, 107246.
  • 3. Adavan Kiliyankil, V., Fugetsu, B., Sakata, I., Wang, Z., Endo, M. 2021. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. Journal of Colloid and Interface Science, 582, 950–960.
  • 4. Ahammad, S.Z., Gomes, J., Sreekrishnan, T.R. 2008. Wastewater treatment forproduction of H2S-free biogas. Journal of Chemical Technology & Biotechnology, 83, 1163–1169.
  • 5. Air Pollution. 2022. https://www.who.int/health-topics/air-pollution#tab=tab_1
  • 6. Andruch, V., Makoś, P., Płotka-Wasylka, J. 2022. Remarks on use of the term “ deep eutectic solvent ” in analytical chemistry. Microchemical Journal, 179, 10498.
  • 7. Aygün, A., Yenisoy-Karakaş, S., Duman, I. 2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66(2–3), 189–195.
  • 8. Banerjee, A.K., Laya Mimo, M.S., Vera Vegas, W.J. 2001. Silica gel in organic synthesis. Uspekhi Khimii, 70(11), 1114–1115.
  • 9. Bank, E.I., Moonen, T., Nunlay, J., Clark, G. 2019. The story of your city : Europe and its urban development, 1970 to 2020. European Investment Bank.
  • 10. Baute-Pérez, D., Santana-Mayor, Á., Herrera-Herrera, A.V., Socas-Rodríguez, B., Rodríguez-Delgado, M.Á. 2022. Analysis of alkylphenols, bisphenols and alkylphenol ethoxylates in microbial-fermented functional beverages and bottled water: Optimization of a dispersive liquid-liquid microextraction protocol based on natural hydrophobic deep eutectic solvents. Food Chemistry, 377.
  • 11. Blach, P., Fourmentin, S., Landy, D., Cazier, F., Surpateanu, G. 2008. Cyclodextrins: A new efficient absorbent to treat waste gas streams. Chemosphere, 70(3), 374–380.
  • 12. Brewster, M.E., Loftsson, T. 2007. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews, 59, 645–666.
  • 13. Bubalo, M.C., Radošević, K., Redovniković, I.R., Slivac, I., Srček, V.G. 2017. Toxicity mechanisms of ionic liquids. Archives of Industrial Hygiene and Toxicology, 68(3), 171–179.
  • 14. Buschmann, H.J., Schollmeyer, E. 2002. Applications of cyclodextrins in cosmetic products: A review. Journal of Cosmetic Science, 53(3), 185–191.
  • 15. Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68.
  • 16. Di Pietro, M.E., Colombo Dugoni, G., Ferro, M., Mannu, A., Castiglione, F., Costa Gomes, M., Fourmentin, S., Mele, A. 2019. Do Cyclodextrins Encapsulate Volatiles in Deep Eutectic Systems? ACS Sustainable Chemistry and Engineering, 7(20), 17397–17405.
  • 17. Doonan, C.J., Tranchemontagne, D.J., Glover, T.G., Hunt, J.R., Yaghi, O.M. 2010. Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2(3), 235–238.
  • 18. Faggian, M., Sut, S., Perissutti, B., Baldan, V., Grabnar, I., Dall’Acqua, S. 2016. Natural Deep Eutectic Solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules, 21(11), 1–11.
  • 19. Francisco, M., Van Den Bruinhorst, A., Zubeir, L.F., Peters, C.J., Kroon, M.C. 2013. A new low transition temperature mixture ( LTTM ) formed by choline chloride + lactic acid: Characterization as solvent for CO2 capture. Fluid Phase Equilibria, 340, 77–84.
  • 20. García, G., Atilhan, M., Aparicio, S. 2015. A theoretical study on mitigation of CO2 through advanced deep eutectic solvents. International Journal of Greenhouse Gas Control, 39, 62–73.
  • 21. Gratuito, M.K.B., Panyathanmaporn, T., Chumnanklang, R.A., Sirinuntawittaya, N., Dutta, A. 2008. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource Technology, 99(11), 4887–4895.
  • 22. Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I. 2020. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393–415.
  • 23. Holbrey, J.D., Seddon, K.R. 1999. Ionic Liquids. Clean Technologies and Environmental Policy, 1(4), 223–236.
  • 24. Jablonsky, M., Majova, V., Skulcova, A., Haz, A. 2018. Delignification of pulp using deep eutectic solvents. Journal of Hygienic Engineering and Design, 22(March), 76–81.
  • 25. Janicka, P., Kaykhaii, M., Płotka-Wasylka, J., Gębicki, J. 2022. Supramolecular deep eutectic solvents and their applications. Green Chemistry, 24(13), 5035–5045.
  • 26. Janicka, P., Przyjazny, A., Boczkaj, G. 2021. Novel “acid tuned” deep eutectic solvents based on protonated L-proline. Journal of Molecular Liquids, 333, 115965.
  • 27. Jenkins, H.D.B. 2011. Ionic liquids-an overview. Science Progress, 94(3), 265–297.
  • 28. Jiang, W., Zhong, F., Liu, Y., Huang, K. 2019. Effective and Reversible Capture of NH3 by Ethylamine Hydrochloride Plus Glycerol Deep Eutectic Solvents. ACS Sustainable Chemistry & Engineering, 7(12), 10552–10560.
  • 29. Kalyniukova, A., Holuša, J., Musiolek, D., Sedlakova-Kadukova, J., Płotka-Wasylka, J., Andruch, V. 2021. Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants. Industrial Crops and Products, 172, 114047.
  • 30. Krishnan, A., Panchamoorthy, K., Dai, G., Vo, V.N., Malolan, R. 2020. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environmental Chemistry Letters, 18(6), 2031–2054.
  • 31. Król, M. 2020. Natural vs. Synthetic Zeolites. Crystals, 10(7).
  • 32. 32. Lei, Z., Chen, B., Koo, Y.M., Macfarlane, D.R. 2017. Introduction: Ionic Liquids. Chemical Reviews, 117(10), 6633–6635.
  • 33. Li, G., Deng, D., Chen, Y., Shan, H., Ai, N. 2014. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents. Journal of Chemical Thermodynamics, 75, 58–62.
  • 34. Li, Z., Zhang, X., Dong, H., Zhang, X., Gao, H., Zhang, S., Li, J., Wang, C. 2015. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances, 5(99), 81362–81370.
  • 35. Li, Z., Zhong, F., Huang, J., Peng, H., Huang, K. 2020. Sugar-based natural deep eutectic solvents as potential absorbents for NH3 capture at elevated temperatures and reduced pressures. Journal of Molecular Liquids, 317, 113992.
  • 36. Liu, B., Wei, F., Zhao, J., Wang, Y. 2013. Characterization of amide–thiocyanates eutectic ionic liquids and their application in SO2 absorption. RCS Advances, 3(7), 2470–2476.
  • 37. Liu, B., Zhao, J., Wei, F. 2013. Characterization of caprolactam based eutectic ionic liquids and their application in SO 2 absorption. Journal of Molecular Liquids, 180(3), 19–25.
  • 38. Liu, Y., Yang, H., Lu, W. 2020. VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. Journal of Environmental Sciences (China), 98, 143–150.
  • 39. Luo, Q., Hao, J., Wei, L., Zhai, S., Xiao, Z., An, Q. 2021. Protic ethanolamine hydrochloride-based deep eutectic solvents for highly efficient and reversible absorption of NH 3. Separation and Purification Technology, 260, 118240.
  • 40. Makoś, P., Słupek, E., Gębicki, J. 2020a. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies. Journal of Molecular Liquids, 308, 113101.
  • 41. Makoś, P., Słupek, E., Gębicki, J. 2020b. Hydrophobic deep eutectic solvents in microextraction techniques–A review. Microchemical Journal, 152, 104384.
  • 42. Makoś, P., Słupek, E., Małachowska, A. 2020. Silica gel impregnated by deep eutectic solvents for adsorptive removal of BTEX from Gas Streams. Materials, 13(8), 1894.
  • 43. Masic, A., Bibic, D., Pikula, B., Razic, F. 2018. New Approach of Measuring Toxic Gases Concentrations: Application Examples. 29th DAAAM Proceedings, 29, 876–881.
  • 44. Moutsatsou, A., Stamatakis, E., Hatzitzotzia, K., Protonotarios, V. 2006. The utilization of Ca-rich and Ca-Si-rich fly ashes in zeolites production. Fuel, 85(5–6), 657–663.
  • 45. Nia, N.N., Hadjmohammadi, M.R. 2021. Amino acids- based hydrophobic natural deep eutectic solvents as a green acceptor phase in two-phase hollow fiber-liquid microextraction for the determination of caffeic acid in coffee, green tea, and tomato samples. Microchemical Journal, 164, 106021.
  • 46. Oszust, M., Barczak, M., Dąbrowski, A. 2012. Mezoporowate materiały krzemionkowe - charakterystyka i zastosowanie. Adsorbenty i Katalizatory: Wybrane Technologie a Środowisko, 2, 289–308.
  • 47. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C. 2014. Natural deep eutectic solvents - Solvents for the 21st century. ACS Sustainable Chemistry and Engineering, 2(5), 1063–1071.
  • 48. Palomar, J., Gonzalez-Miquel, M., Bedia, J., Rodriguez, F., Rodriguez, J.J. 2011. Task-specific ionic liquids for efficient ammonia absorption. Separation and Purification Technology, 82, 43–52.
  • 49. Pan, Z., Bo, Y., Liang, Y., Lu, B., Zhan, J., Zhang, J., Zhang, J. 2021. Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. Journal of Molecular Liquids, 326, 115283.
  • 50. Percevault, L., Limanton, E., Gauffre, F., Lagrost, C., Paquin, L. 2021. Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances. In Environmental Chemistry for a Sustainable World, 56
  • 51. Petrov, I., Michalev, T. 2012. Synthesis of Zeolite A: A Review. Proceedings - Chemical Technologies, 30–35.
  • 52. Płotka-Wasylka, J., Rutkowska, M., Owczarek, K., Tobiszewski, M., Namieśnik, J. 2017. Extraction with environmentally friendly solvents. TrAC - Trends in Analytical Chemistry, 91, 12–25.
  • 53. Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monni, G., Intorre, L. 2006. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry, 8(3), 238–240.
  • 54. Sarmad, S., Xie, Y., Mikkola, J.P., Ji, X. 2017. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New Journal of Chemistry, 41(1), 290-301.
  • 55. Shang, D., Bai, L., Zeng, S., Dong, H., Gao, H., Zhang, X., Zhang, S. 2018. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents. Journal of Chemical Technology and Biotechnology, 93(5), 1228–1236.
  • 56. Słupek, E., Makoś, P., Gȩbicki, J. 2020. Theoretical and economic evaluation of low-cost deep eutectic solvents for effective biogas upgrading to bio-methane. Energies, 13(13), 3379.
  • 57. Smith, E.L., Abbott, A.P., Ryder, K.S. 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114, 11060–11082.
  • 58. Sun, S., Niu, Y., Xu, Q., Sun, Z., Wei, X. 2015. Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride. Industrial and Engineering Chemistry Research, 54(33), 8019–8024.
  • 59. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. 2002. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974–4975.
  • 60. Tang, B., Zhang, H., Row, K.H. 2015. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science, 38(6), 1053–1064.
  • 61. Tobiszewski, M., Mechlinska, A., Namieśnik, J. 2010. Green analytical chemistry—theory and practice. Chemical Society Reviews, 39(8), 2869–2878.
  • 62. Vidal, C., García-Álvarez, J., Hernán-Gõmez, A., Kennedy, A.R., Hevia, E. 2014. Introducing deep eutectic solvents to polar organometallic chemistry: Chemoselective addition of organolithium and grignard reagents to ketones in air. Angewandte Chemie - International Edition, 53(23), 5969–5973.
  • 63. Warner, J.C., Anastas, P.T. 1998. Green Chemistry: Theory and Practice. Oxford University Press.
  • 64. Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235.
  • 65. Yang, D., Hou, M., Ning, H., Zhang, J., Yang, G., Han, B. 2013. Efficient SO2 absorption by renewable choline chloride–glycerol deep eutectic solvents. Green Chemistry, 15, 2261–2265.
  • 66. Zallama, B., Ghedira, L.Z., Ben Nasrallah, S. 2018. Characterization of thermophysical properties of silica gel. Journal of Porous Media, 21(7), 577–588.
  • 67. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F. 2012. Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108–7146.
  • 68. Zhao, D., Liao, Y., Zhang, Z.D. 2007. Toxicity of ionic liquids. Clean - Soil, Air, Water, 35(1), 42–48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8974e40-8844-40c2-82e9-d2b9e25b1bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.