PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sub-optimal motion planning of one-chained, two-input nonholonomic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper three algorithms of motion planning for two-input, one-chained nonholonomic systems are presented. The classical Murray-Sastry algorithm is compared with two original algorithms aimed at optimizing energy of controls. Based on the generalized Campbell- Baker-Hausdorff-Dynkin formula applied to the systems, some observations are made concerning the optimal relationship between amplitudes and phases of harmonic controls. The observations help to optimize a selection of controls and to design new algorithms for planning a sub- optimal trajectory between given boundary configurations. It was also shown that for those particular systems the generalized C-B-H-D formula is valid not only locally (as in a typical case) but also globally. Simulations performed on the five-dimensional chain system facilitate distinguishing the proposed algorithms from the Murray-Sastry algorithm and to illustrate their features. Systems in a chained form are important from a practical point of view as they are canonical for a class of systems transformable into this form. The most prominent among them are mobile robots with or without trailers.
Rocznik
Strony
art. no. e145684
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
  • Department of Cybernetics and Robotics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Control Systems and Mechatronics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
  • [2] M. Galicki, “The planning of optimal motions of non-holonomic systems,” Nonlinear Dyn., vol. 90, pp. 2163–2184, 2017.
  • [3] T. Rybus, “The obstacle vector field (ovf) method for collision-free trajectory planning of free-floating space manipulator,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140691, 2022, doi: 10.24425/bpasts.2022.140691.
  • [4] W. Wawrzyński, M. Zieja, M. Żokowski, and N. Sigiel, “Optimization of autonomous underwater vehicle mission planning process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140371, 2022, doi: 10.24425/bpasts.2022.140371.
  • [5] I. Duleba, W. Khefifi, and I. Karcz-Duleba, “Layer, Lie algebraic method of motion planning for nonholonomic systems,” J. Frankl. Inst., vol. 349, no. 1, pp. 201–215, 2012.
  • [6] A. Ratajczak and K. Tchoń, “Parametric and non-parametric jacobian motion planning for non -holonomic robotic systems,” J. Intell. Robot. Syst., vol. 77, no. 3, pp. 445–456, 2015.
  • [7] L. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” Am. J. Math., vol. 79, no. 3, p. 497–516, 1957, doi: 10.2307/237256.
  • [8] S. Agraval and S. Bhattacharya, “Optimal control of driftless systems: Some new results,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1999, pp. 356–261.
  • [9] R. Murray and S. Sastry, “Steering nonholonomic control systems using sinusoids,” IEEE Trans. Autom. Control, vol. 38, no. 5, pp. 700–716, 1993.
  • [10] D.E. Kirk, Optimal Control Theory: An Introduction. Prentice-Hall, 1970.
  • [11] S.L. Richter and R. DeCarlo, “Continuation methods: Theory and applications,” IEEE Trans. Circuits Syst., vol. 30, no. 6, pp. 347–352, 1983.
  • [12] S. LaValle and J. Kuffner, Algorithmic and Computational Robotics: New Directions. A.K. Peters/CRC Press, 2001, ch. Rapidly-exploring random trees: Progress and prospects, pp. 293–308.
  • [13] R. Geraerts and M.H. Overmars, Algorithmic Foundations of Robotics. Springer Berlin Heidelberg, 2004, ch. A Comparative Study of Probabilistic Roadmap Planners, pp. 43–57, doi: 10.1007/978-3-540-45058-0_4.
  • [14] R. Brockett, “Control theory and singular Riemannian geometry,” in New Directions in Applied Mathematics. New York: Springer-Verlag, 1981, pp. 11–27.
  • [15] C. Altafini, “The general n-trailer problem: Conversion into chained form,” in Conf. on Decision and Control, Tampa, 1998, pp. 3129–3130.
  • [16] W. Kowalczyk and K. Kozłowski, “Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 915–924, 2019.
  • [17] M. Ito, “Motion planning of a second-order nonholonomic chained form system based on holonomy extraction,” Electronics, vol. 8, no. 11, pp. 1–21, 2019.
  • [18] J. Luo and P. Tsiotras, “Control design for chained-form systems with bounded inputs,” Syst. Control Lett., vol. 39, no. 2, pp. 123–131, 2000.
  • [19] Z.-P. Jiang and H. Nijmeijer, “A recursive technique for tracking control of nonholonomic systems in chained form,” IEEE Trans. Autom. Control, vol. 44, no. 2, pp. 265–279, 1999.
  • [20] R. Murray and S. Sastry, “Steering nonholonomic systems in chained form,” in Proc. Conf. on Decision and Control, Brighton, 1991, pp. 2121–2126.
  • [21] D. Tilbury, J. Laumond, R. Murray, S. Sastry, and G. Walsh, “Steering car-like systems using sinusoids,” in IEEE Conf. on Robotics and Automation, Nice, France, 1992, pp. 1993–1997.
  • [22] F. Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, ser. Springer Briefs in Mathematics. Springer, 2014.
  • [23] B. Jakubczyk, “Nonholonomic path following with fastly oscillating controls,” in IEEE Int. Workshop on Robot Motion and Control, Wasowo, Poland, 2013, pp. 99–103.
  • [24] I. Duleba, “Impact of control representations on efficiency of local nonholonomic motion planning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 2, pp. 213–218, 2011.
  • [25] J. Laumond, S. Sekhavat, and F. Lamiraux, Robot Motion Planning and Control, ser. Lecture Notes in Control and Information Sciences. Springer Berlin, Heidelberg, 1998, vol. 229, ch. Guidelines in Nonholonomic Motion Planning for Mobile Robots.
  • [26] R. Strichartz, “The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations,” J. Funct. Anal., vol. 72, pp. 320–345, 1987.
  • [27] W. Chow, “Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung,” Math. Ann., vol. 117, no. 1, pp. 98–105, 1939.
  • [28] I. Duleba and W. Khefifi, “Pre-control from of the gcbhd formula and its application to nonholonomic motion planning,” in Proc. 7th IFAC Symposium on Robot Control, vol. 1. Wrocław: Oxford, Elsevier, 2004, pp. 123–128.
  • [29] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Belmont, Massachusetts: Athena Scientific, 1996.
  • [30] D. Tilbury, R. Murray, and S. Sastry, “Trajectory generation for the n-trailer problem using Goursat normal form,” IEEE Trans. Autom. Control, vol. 40, no. 5, p. 802–819, 1995.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8914a7b-6dce-443d-8bd9-99d5ff7484a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.