Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Metoda analizy elementów skończonych (FEA) w zastosowaniu do zgrzewania rezystancyjnego punktowego (RSW)
Języki publikacji
Abstrakty
Modeling RSW was studied by many researchers with considering different electrical, thermal, and mechanical phenomena such as formation of temperature field and welding nugget growth. This paper is a review of the most important efforts in the field of FEA of RSW, by investigating present finite element method (FEM) studies. After a brief introduction on FEA studies on RSW, such numerical solution methods as FEM and FDM (Finite Difference Method) are compared. Governing electrical, thermal, and mechanical equations are then discussed. A brief investigation about applicable algorithms is presented as a procedure for numerical solution. The importance of credible material properties is emphasized and predicted results in different studies are discussed. The final two parts are about recent issues in RSW FEA process and review of special cases such as multiple-sheet, single-sided welding, shunting effect, and covered models. Conclusions and suggestions about future studies are also provided.
Modelowanie RSW było stosowane przez wielu badaczy z uwzględnieniem różnych zjawisk elektrycznych, cieplnych i mechanicznych, takich jak powstające pole temperatury czy wzrost jądra zgrzeiny. Niniejszy artykuł stanowi przegląd najważniejszych dokonań w obszarze zastosowania FEA w RSW, zwłaszcza wyników badań metodą elementów skończonych (FEM). Po krótkim wprowadzeniu do tematu przedstawiono porównanie takich metod obliczeń numerycznych jak FEM i FDM (metoda różnic skończonych) oraz dyskusję podstawowych równań elektrycznych, cieplnych i mechanicznych. Prześledzono i przedstawiono w skrócie algorytmy stosowane w procedurach rozwiązań numerycznych. Podkreślono znaczenie używania wiarygodnych danych materiałowych oraz przedyskutowano wyniki uzyskane w trakcie różnych studiów. Końcowe dwa akapity omawiają aktualne problemy FEA dla RSW, a także przegląd modeli dla szczególnych przypadków takich jak jednoczesne zgrzewanie kilku blach, zgrzewanie jednostronne, bocznikowanie prądu zgrzewania i zgrzewanie z nakładkami. Przedstawiono także podsumowanie i sugestie dla dalszych prac.
Czasopismo
Rocznik
Tom
Strony
46--52
Opis fizyczny
Bibliogr. 26 poz., il.
Twórcy
autor
- Department of Welding Engineering, Warsaw University of Technology, Poland
- Department of Mechanical Engineering, University of Tehran, Iran
autor
- Department of Welding Engineering, Warsaw University of Technology, Poland
autor
- Department of Mechanical Engineering, University of Tehran, Iran
Bibliografia
- [1] Archer, G. (1960), „Calculations for Temperature Response in Spot Welds”. Welding Journal, 39, 327s-330s.
- [2] Greenwood, J.A. (1961), „Temperature in spot welding”, British Welding Journal 8 (6), 316–322.
- [3] Gould, J. E. (1987), „An examination of nugget development during spot welding, using both experimental and analytical techniques”, Welding Journal, 66 (1), 1s-10s.
- [4] Nied, A. (1984), „The finite element modeling of resistance spot welding process”, Welding Journal 63 (4), 123–132.
- [5] Huh, H., Kang, W.J. (1997), „Electro-thermal analysis of electrode resistance spot welding process by a 3-D finite element method”, Journal of Materials Processing Technology 63, 672–677.
- [6] Loulou, T., Masson, P., Rogeon, P. (2006), “Thermal characterization of resistance spot welding”, Numerical Heat Transfer Part B: Fundamentals 49 (6), 559–584.
- [7] Tsai, C. L., Jammal, O. A., Papritan, J. C., Dickinson, D. W. (1992), „Analysis and development of a real time control methodology in resistance spot welding”, Welding Journal 70 (12), 339s–351s.
- [8] Zhang, H., Senkara, J. (2011), „Resistance Welding: Fundamentals and Applications - 2nd Edition”, Chapters 1-7, CRC Press, UK.
- [9] Hard, A. R. 1948. „Preliminary test of spot weld shunting in 24ST Alclad”, Welding Journal 27(6): 491-495.
- [10] Chang, H. S., Cho, H. S. (1990), „A Study on the Shunt Effect in Resistance Spot Welding”, Welding Journal 69 (8), 308-316.
- [11] Wang , B., Lou, M., Shen, Q., Li, Y. B., Zhang, H. (2013), „Shunting effect in resistance spot welding steels - part 1: experimental study”, Welding Journal 92 (6), 182s-189s.
- [12] Hamedi, M., Eisazadeh, H., Esmailzadeh, M. (2010), „Numerical simulation of tensile strength of upset welded joints with experimental verification”, Material & Design 31, 2296–2304.
- [13] Sun, X., Dong, P. (2000), „Analysis of Aluminum Resistance Spot Welding Processes Using Coupled Finite Element Procedures”, Welding Journal, 79 (8), 215-s–221-s.
- [14] Yamamoto, T., Okuda, T., 1971, „A study of spot welding of heavy gauge mild steel”.Welding in the World 9 (7–8), 234–255.
- [15] Hou, Z., Kim, I., Wang, Y., Li, C., Chen, C. (2007), „Finite element analysis for the mechanical features of resistance spot welding process”, Journal of Materials Processing Technology 185, 160–165.
- [16] Murakawa, H., Zhang, J. (1998), „FEM simulation of spot welding process: effect of initial gap on nugget formation”, Transactions of JWRI 27 (1), 75–82.
- [17] Shen, J., Zhang, Y., Lai, X., Wang, P.C. (2011), “Modeling of resistance spot welding of multiple stacks of steel sheets”, Materials and Design 32, 550–560.
- [18] Cho, H.S., Cho, Y.J. (1989), „A study of the thermal behavior in resistance spot welding”, Welding Journal 68 (6), 236s–244s.
- [19] Han, Z., Orozco, J., Indacochea, E., Chen, C.H. (1989), „Resistance spot welding: a heat transfer study”, Welding Journal 68 (9), 363s–371s.
- [20] Eisazadeh, H., Hamedi, M., Halvaee, A. (2010), „New parametric study of nugget size in resistance spot welding process using finite element method”, Materials and Design 31 (1), 149–157.
- [21] Zhang, H., Senkara, J., Wu, X., (2002), „Suppressing cracking in resistance welding AA5754 by mechanical means”, Transactions of ASME - Journal of Manufacturing Science and Engineering, 124, 79-85.
- [22] Murakawa, H., Zhang, J., Fujii, K., Wang, J., Ryudo, M. (2000), „FEM simulation of spot welding process: characteristics of electrode displacement and nugget formation”, Transactions of JWRI 29 (1), 73–80.
- [23] Kim, J.H., Cho, Y., Jang, Y.H. (2013), “Estimation of the weldability of single-sided resistance spot welding”, Journal of Manufacturing Systems 32, 505–512.
- [24] Shi, H., Qiu, R., Zhu, J., Zhang, K., Yu, H., Ding, G. (2010), „Effects of welding parameters on the characteristics of magnesium alloy joint welded by resistance spot welding with cover plates”, Materials and Design 31, 4853–4857.
- [25] Ma, N., Murakawa, H. (2010), „Numerical and experimental study on nugget formation in resistance spot welding for three pieces of high strength steel sheets”, Journal of Materials Processing Technology 210, 2045–2052.
- [26] Feng, Z., Babu, S.S., Santella, M.L., Riemer, B.W., Gould, J.E. (1998) „An incrementally coupled electrical-thermal-mechanical model for RSW”, in Proc. of 5th Int. Conf. on Trends in Welding Research, ASM Int., Pine Mountain, 599. Also: Babu, S.S., Web site: http://mjndeweb.ms.orln.gov?Babu/default.html
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8913e99-1e65-44d0-871f-7ec56ceef646